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Notation

Listed below are the principal symbols used in this dissertation.

All terms are scalars unless stated otherwise.

a semimajor axis of orbit ( 3 rd state)

a = e cos(O + w) equinoctial element (1s" state)
f

a = e sin(O + w) equinoctial element (2nd state)

CQ C- pseudonoise matrix (n x n)
n

D diagonal matrix (n x n) (a factor of covariance

matrix)

e orhit~nl eccentricity

e unit vector in direction of observed star

e e e unit vectors defining gccentric-equaterial
system

f set of dynamics equations (n x 1)

gm, g9, gW orbit-dependent constants from Aksnes' theory

H linearized formulation of observation relation
(I x il)

h = cosl observation relation

i orbital inclination

J ith zonal harmonic of Earth's gravity field

K Kalman gain (n x 1)

L = a + w + M mean longitude of orbit (4th state)

M mean anomaly

xii



n mean motion

n "mean" mean motion

n acceleration in mean longitude/mean anomaly
parameter")

P covariance matrix (n x n)

Q variance of noise in observation measurement

t time

U unit upper triangular matrix (n x n) (a factor
of covariance matrix)

v zero-mean, discrete-time white Gaussian noise
in observation measurement

vo2 rbit-averaged speed squared of spacecraft
b relative to atmosphere

x state vector in equinoctial
elements (n x 1)

x estimate of state (n x l)

x ref state about which system is linearized (n x l)

x- state in geocentric-equatorial position and
velocity (n x 1)

z = cosy measurement

2 5/2
3 / shorthand notation

true data (compliment of Earth-spacecraft-

star angle)

-y measured angular data

Ibias bias in measured angle

6L 0correction to mean longitude at epoch (one of
two "epoch correction terms)

xiii



Sn linear correction term at epoch (one of tw',
0 f"epoch correction terms)

0 angle between orbit plane and target star

target

7= 2 + w longitude of perigee

p atmospheric density

a standard deviation of star sensor/
COMp Earth sensor combination

a standard deviation of ith state
element

a standard deviation of Earth horizon sensor

a• standard deviation of star sensor

isini sinQ equinoctial element (5th state)
1 + cosi

= sini cosis equinoctial element (6th state)
1 + cosi

longitude of ascending node

argument of perigee

orbital period

P rate of change of orbital period at epoch
0

Subscripts

0 evaluation at epoch

A computed with Aksnes' theory

RW "real world" values

ave average value

xiv



Superscripts

T transpose of matrix/vector

pre-update value

post-update value

0
xv



AFIT/DS/AA/89-1

Abstract

A new system for autonomous satellite navigation is developed and

investigated. Unlike many previous studies, however, this system is not

limited to the determination of an Earth satellite's current position.

By using a two-step technique combined with a general perturbations

model, this method allows the air-drag effect on the orbit to be esti-

mated and applied to a future position prediction. Simulations using

existing hardware have demonstrated that the algorithm presented is

capable of current position estimates of sub-kilometer accuracy. Pre-

diction precisions rival those of ground-based facilitie: 8 - 12 km

* two weeks in the future for low-Earth orbits.
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AN AUTONOMOUS ORBIT DETERMINATION SYSTEM FOR EARTH SATELLITES

I. Introduction

Almost all current United States Air Force space systems rely on

ground-based control centers. This dependence is undesirable from two

aspects. First, these centers are vulnerable to attack. Second, ground-

based operations are rapidly becoming a major, if not the major, portion

of a spacecraft's total mission cost (20:131). It is for these reasons

that the U.S. Air Force/Space Division spacecraft autonomy program was

initiated in 1980.

Two operations which presently require large amounts of ground-

based processing time are orbit determination and data annotation. At

present, orbit determination involves reducing data from worldwide

spacetrack sensors to produce orbital element sets for objects in space.

Data annotation is the combining of latitude, longitude, and time infor-

mation with sensor data (such as photographs). Currently, these opera-

tions require an awkward and time-consuming mix of men and computers

(30:1).

Responsibility for obtaining and maintaining current orbital

element estimates for all Earth-orbiting objects currently falls on the

Space Defense Center (SDC), located in the NORAD Cheyenne Mountain

Complex (NCMC). With the number of satellites approaching 6000, it is

1-1



clearly desirable to reduce the computational load at SDC as much as

possible (11:72). One possible way to achieve this reduction would be

for individual satellites to share the burden with SDC by autonomously

obtaining and maintaining estimates of their own orbital elements.

Orbit determination is but one function of an autonomous navigation

system. To be truly useful, an autonomous navigation system should be

capable of performing all of the other navigation functions currently

executed on the ground. These include predicting future positions and

events (such as eclipses) and performing correction maneuvers (38:111-

66). At the heart of all of these functions is the necessity to know

the position and velocity of the spacecraft in real time as well as the

knowledge of how these will change with time. Thus, the goal of this

research has been to find a system configuration and an algorithm to

* meet these requirements efficiently and accurately.

Chapter II reviews past research into this area. Chapter III

provides an overview of the study and the simulation methods employed.

Chapter IV derives and refines the short-term estimator used to calcu-

late the spacecraft's current position, with the results being presented

in Chapters V and IV. The problem of predicting positions far in the

future is introduced in Chapter VII and an approach making use of a two-

step process is derived therein. Chapter VIII contains the corre-

sponding results.

Before detailing the methods derived and investigated in this

research effort, it is important to outline past and present approaches

to the autonomous satellite navigation problem. These will be discussed

in the next chapter.0
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II. Methods and Related Efforts

Autonomous navigation systems can be separated into three distinct

categories, organized by the type of data upon which they base their

estimates (30:1). The groupings are:

1. Earth-based reference measurements.

2. Range measurements to known beacons in space.

3. Position sensitive angular measurements to
celestial objects.

To understand the differences in these categories, they will be covered

individually in some detail.

Earth-Based Reference Measurement Systems.

It is possible fnr space-based sensors to detect and track known

landmarks on Earth. These landmarks may be natural features such as

coastlines and lakes or may be man-made reference points such as highway

crossings, airport radar emissions, and search lamps. Several technol-

ogies exist for this task: known landmark tracker/area correlations,

known landmark trackers, artificial landmark trackers, and inter-

ferometer landmark trackers (30:5-8).

Known Landmark Tracker/Area Correlation. The theory behind known

landmark tracker/area correlation is simple: known features in the

field-of-view (FOV) of the sensor are used to enhance the determination

of the satellite's location in space. While not an autonomous system by

itself, the utility in this method is in its ability to enhance position

2-1



information from the navigation system significantly. When applied to

LVNDSAT data, this technique pinpoints the FOV to within 8 - 80 m

(30:5-6).

Known Landmark Trackers. These systems utilize natural features,

usually linear in appearance, such as rivers and coastlines. The

concept involved is to detect and track the sharp discontinuities in

intensity between a known feature and the surrounding area. Landmarks

parallel to the flight path give cross-track information while those

perpendicular yield in-track information (30:6-7).

Artificial Landmark Trackers. Identical in theory to the known

landmark trackers just described, these differ only in that the feature

tracked is man-made. Due to their easily recognizable characteristics,

point references such as xenon search lamps may be used. Highways serve

as excellent linear features (30:7-8).

Interferometer Landmark Trackers. Many radar units are dispersed

about the globe at well-known locations. Passive use can be made of

emissions from these sites. Two orthogonal phase interferometers

measure phase differences in the received radar signal. This informa-

tion yields a line-of-sight vector towards the radar. Knowing the

radar's fixed position, the satellite's attitude, and this vector, the

position of the satellite may be deduced. This is really just a special

case of an artificial landmark tracking system (30:8).

All of these landmark techniques are ideal for image registration

since they precisely fix the ground position being observed. Unfortu-

nately, landmark observations cannot be used to determine the position

0
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in space without knowing the attitude (30:5-8,10). Thus, these tech-

niques cannot be used independently of an attitude determination system.

Further, since these systems rely on Earth-based features, they must be

considered vulnerable to man-made interference (jamming) as well as

natural phenomena (clouds). Lowrie gives an excellent table of the

benefits and limitations of each landmark system discussed (30:9).

Rangze Measurements to Known Beacons in Space.

Measurements made through observations of other spacecraft can be

used by a navigation system to estimate the ephemeris of a satellite.

These beacon satellites can, in theory, be actively participating in the

tracking or be passive bystanders. But, for practical purposes, a high

degree of accuracy is dependent upon beacons which actively participate

by broadcasting, sharing information, etc.

Anthony's Proposal. Anthony has suggested a method for using

relative motion data between two satellites to determine the orbital

elements of each (5). His method relies on the ability to detect and

track a nearby satellite for which an initial estimate of the orbital

elements is known. While this could prove feasible between a rather

large group of "friendly" satellites which crosslink information, it can

hardly be considered completely autonomous. Further, since each satel-

lite relies on others, the system is too vulnerable to attack.

Michael Ward's Proposal, Michael Ward's Master's thesis centered

around satellite clusters (43). Using a simplistic model, Ward's

research was a proof-of-concept study into a satellite's ability to

determine its precise position relative to other nearby satellites.

Each satellite in the cluster was assumed to be in a nearly circular

2-3



orbit and was able to obtain a measurement of the range to the others.

As with Anthony's proposal, this means each satellite cannot be con-

sidered truly autonomous. A more direct impact of Ward's study to this

research is his comparison of estimators applied to the problem. He

showed, once again, the superiority of the U-D factorization of the

Kalman filter (32:392-399) over the standard form of the Kalman filter

(32:206-226; 43:2-14, 4-1).

GPS. The Global Positioning System (GPS) is another variation on

the beacon idea. When completed, GPS is to consist of a constellation

of 18 satellites, each broadcasting extremely accurate time and position

information. By receiving broadcasts from all of the GPS satellites in

view at any given time, a user can determine his position to within

5 - 70 m (1c) and his velocity to approximately 0.002 m/sec (la). The

actual precision is a function of the orbital altitude (14:34-35;

22:601).

While this system provides accurate position information, it is

not without its drawbacks. First, it must be considered vulnerable;

destroying a significant portion of the GPS constellation would render

the system useless. In addition, the GPS satellites themselves are

highly dependent on ground resources for their position and velocity

information. Users of the GPS system must, therefore, be considered

just as vulnerable as the ground centers themselves. Second, the GPS

system does not provide any attitude information; therefore, any satel-

lite using the GPS system would still req,,ire an independent attitude

determination subsystem (30:11).

0
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Position Sensitive Angular Measurements to Celestial Obiects.

This area seems to be the most promising and best researched

(14:27-32; 17; 21; 29; 30:1-3,4-5,10; 34; 35; 42). While many varied

approaches exist, they share a common principle: by observing celestiil

bodies with known locations, a satellite's position in three-dimensional

space can be deduced. Each approach to this method of position uetermi-

nation has its own unique characteristics, so this technique will be

covered by example.

Lincoln Experimental Satellite Autonomous Stationkeeping SvsteP.

In 1975, two satellites, LES 8 and 9, were launched by the U.S. Air

Force to test the feasibility of autonomous navigation (30:2). The

primary objective of these craft was to maintain the desired station as

accurately as possible with a high fuel efficiency. Twc sun t~ansit

sensors, two horizon sensors, and hardwired algorithms were used to

determine the satellites' longitude and two degrees of attitude (:oll

and pitch). ýhile this system was rather specialized and its accuracy

modest, it demonstrated the feasibility of autonomous navigation (30:2).

AGN. The Jet Propulsion Laboratory's Autonomous Guidance and

Navigation (AGN) project was designed for use in interplanetary missions

(30:2). This system uses solid state sensors to detect stars, planets,

asteroids, and other illuminated bodies. The absolute directions of

background stprs are determined and compared to an onboard star catalog

for identification. Once stars are identified, the measurements can be

used to determine the satellite's attitude and position. Further, with

additional knowledge about the relative location of an illuminated

target (such as a planet), the system can deduce the target's ephemeris.

2-5



Space Sextant. The space sextant autonomous navigation and atti-

tude reference system (SS/ANARS) is being built by Martin Marietta Aero-

space for the USAF (14:30-32; 17:7-8,16-17; 30:4-5). The sextant is

ccmposed of two cassegranian telescopes, accurate to 0.5 arcseconds,

mounted on a three-degree-of-freedom platform. One telescope tracks the

bright limb of the moon, while the other tracks a known star. Naviga-

tion information is derived from the included angle between the two

lines of sight. The system is advertised to yield the attitude to

0.6 arcsec. (1a), position to 244 - 300 m (la), and velocity to 0.03 -

0.003 m/s (l1). Further, the expected flight mass and power consump-

tion are 25 kg and 50 W, respectively (14:30,32; 17:16; 30:9).

MADAN, TRW's Multimission Attitude Determination and Autonomous

Navigation System (MADAN) incorporates two star sensors, an Earth

sensor, and a computer (1'4:28,30; 17:7). Angular data from the star

sensors is sufficient to derive the spacecraft inertial attitude.

Knowledge of the attitude, when combined with the measurements from the

Earth sensor, allows the position of the satellite with respect to the

Earth to be computed. Navigational precision is said to be 0.4 -

1.4 km (l1) in position and 0.4 - .13 m/s (la) in velocity for

orbital altitudes less than or equal to geosynchronous altitude. Mass

and power consumption characteristics are comparable to those of the

space sextant (14:28,30; 17:7).

SHAR/SHAD. Stellar Horizon Atmospheric Refraction (SHAR) (21) and

Stellar Horizon Atmospheric Dispersion (SHAD) (29) tec iniques make use

of the refractive/dispersive properties of the Earth's atmosphere. As

the line of sight between a satellite and a star encounters the Earth's

2
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i :mosphere, it is refracted and dispersed. If the relationships between

altitude and these variations are known, then one component of the

satellite position can be determined with each observation. MultiDle

observations yield a complete set of orbital elements. With extremely

accurate sensors (thousandths of arcseconds), the standard deviation in

position determination is advertised to be 100 - 250 m, depending on

orbital altitude (14:35; 21:129,133; 29:573-574,583-587).

Mease et al.'s Proposal. Mease et al. have proposed a method of

autonomous navigation for geosynchronous satellites using instruments

already on many such spacecraft (34). A sun sensor, an Earth sensor,

and a solar-array-drive potentiometer supply the data. An extended

Kalman filter produces an estimate of the spacecraft's orbital elements

from the observations.

Although somewhat limited in application by the requirement the

satellite be in synchronous orbit, this method does show promise.

Within the first 24 - 36 hours, the filter converges to the vicinity

of the true state with an error standard deviation of 2 km in the oscu-

lating semimajor axis and 0.030 in the mean inertial longitude (34).

Statistics on other errors such as that in the inclination angle were

not available.

Metzler's Proposal, Metzler has studied the ability of an

autonomous system for satellites operating in high-altitude orbits

(35). His study investigates the possibility of using a star sensor,

an Earth sensor, and a linear Kalman filter to estimate the position

and velocity of a satellite in a circular orbit at five times synchro-

nous altitude. The steady-state error in estimated position for this
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system is predicted to be about 12 km (1o). Predicted steady-state

velocity errors are on the order of 0.15 m/s (la) (35).

John Ward's Proposal. In John Ward's Master's thesis, he proposed

using one or two star sensors and an Earth sensor to determine the

orbital elements of a satellite in an arbitrary crbit (42). Using two-

body equations of motion and simulated data, he used both nonlinear

least squares and Bayes filter methods (42:27-33; 44:64-69,91-93) to

produce position estimates. Since Ward's method involved numerical

integration, its applicability to current, space-qualified onboard

computers is questionable. This is because onboard computers are,

typically, small and numerical integration of the equations of motion

and the equations of variation can be a very resource-demanding process

(44:77). Ward's study did, however, demonstrate that a configuration

* combining star sensors and an Earth sensor has the capability of being

used to produce position estimates accurate to at least two or three

kilometers (42:63).

Conclusion

As is clear from the long list of related efforts, autonomous

navigation is a much desired goal. Each of the described methods and

studies has its advantages and disadvantages. One common disadvantage

that all of these methods share is the inability to predict accurately

far into the future -- the so-called, "Where will I be?" question. In

part, this is due to the inability to estimate air-drag parameters with

much accuracy. Further, the simple dynamics models used in many of

these systems ignore drag effects altogether, leading to large errors

when one attempts to propagate the trajectory into the future. This
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problem will be addressed in Chapter VII, "The Formulation of the Long-

Term Estimation Problem" and the method derived will be studied in a

simulated application to NASA's Space Station.

Perhaps the largest drawback of the systems intended for Earth-

orbit applications is that none are capable of using inexpensive, "off-

the-shelf" hardware to produce accurate estimates of current and future

positions for satellites in arbitrary orbits. In fact, not a single

truly autonomous system for Earth satellites is in use today (45). One

major contribution of this research is the development of a system which

relies only on sensors and microprocessors in use today.
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III. Research Overview

The purpose of this research has been to develop and test an algo-

rithm for autonomous satellite navigation relying only on currently

available hardware. Unlike the schemes discussed in the previous sec-

tion, this system has been designed with more in mind than just the

desire to estimate a satellite's current position. The procedure •:iei-

oped herein not only finds the satellite's current noTbital position, but

can also predict how this changes over long periods of time. Thus, this

system is able to perform both. short-term ("Where am I?") and long-term

("Where will I be?") estimation.

Estimacor

The problem examined is the derivation of a satellite's position

from imperfect observations and measurements. Such problems are pre-

cisely the function of estimators/filters. This study applies an

iterated, extended form (33:58-59) of the Bierman-Thornton U-D filter

(9:77,95-100,149; 32:392-397). The U-D factorization has well-documented

superiority over other sequential estimators in applications such as this

one (9:77,95-100,149; 13:1; 16:444; 17; 24:223; 32:236,399; 39:1-3; 43;

44:104-105).

Sensor Configuration

The satellite configuration considered was one incorporating at

least one star sensor, an Earth sensor, and a microcomputer. This

arrangement of sensors was selected because it is a common combination

on existing satellites (42:14). Metzler and J. Ward have both shown
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that accurate position determination is possible with such instrumen-

tation (35; 42).

J. Ward found that using data from two star sensors produced better

results than using just one (42:55,56); however, as will be shown in a

later section, the generalization that "more is better" does not always

aPplv to Hiht systrm cLolod h'rr. T--ied, it was found that the proper

choice of a single observation star was typically far better than the

haphazard choice of two. Thus, a part of this investigation was into

the effect of star selection; for instance, how important is the loca-

tion of the viewed star relative to the satellite's orbit?

Dynamics Model

The estimator requires a dynamics model to propagate the state

estimate forward from one observation time to the next. Solving the

long-term estimation problem also requires equations of motion to prop-

agate the states forward for long periods; therefore, a model of the

dynamics must be included in the navigation system.

This is a real-time application on a microcomputer, so numerical

integration is best avoided if alternative methods can produce compa-

rable precision with fewer computations. General perturbations solu-

tions (closed-form) can deliver such performance. Further, autonomous

navigation studies involving numerical integration are common in the

open literature while studies involving general perturbations methods

are not (10; 11; 17; 22; 39; 42). For these two reasons, a general

perturbations theory derived by Aksnes' was selected as a starting point

(2; 3; 4).

3
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Air drag significantly affects satellite motion in low-altitude

orbits. Predicting the position of a satellite far into the future

requires some knowledge of this effect. Other attempts have involved

modifying the equations of motion (10:13-14; 11:9-11; 25). For example,

Boden approached this problem by estimating the ballistic coefticient of

the satellite concurrently with the orbital element estimation (11:1,

9-11). His attempt failed to produce an accurate or computationally

practical method for onboard orbit prediction.

A fundamental problem with Boden's and similar research is that

the effect of air drag between observations is so small as to be over-

shadowed by the error in sensor measurements (44:95-97). In addition,

previous methods have tended to account for drag by working its effect

into the semimajor axis and eccentricity calculations only (11.9-11;

25:6). Jazwinski suggests the effect of air drag is better observed as

an effect on the mean anomaly (23:306). Experience in orbit prediction

at the NCMC further supports this suggestion (10:13; 45). Indeed, an

analytical basis for this effect can be derived and is presented in an

upcoming section.

This research investigates tracking the drag effect as a two-step

estimation problem. First, observations are taken at a rate for which

drag effects cannot be separated from random noise in the sensors. This

s wplies enough data to produce accurate estimates for the orbital ele-

ments at any given time. (In other words, this data is meant to answer,

"Where am I?") Then, after a sufficient time (approximately one week),

the effect of air drag m-nifests itself as an increase in the mean

anomaly that is quadratic with time. (A corresponding linear decrease
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in the semimajor axis can also be observed, only to a lesser degree.)

At that point, an estimate of the drag effect can be determined. This

two-step estimation technique was investigated by simulating an applica-

tion to a situation where drag is quite significant: NASA's Space

Station Freedom (15).

Onboard Computer Simulation

The satellite's computer was assumed to be equivalent to an 8 MHz

8088-based microcomputer with an 8087-2 math coprocessor. This configu-

ration at least approximates current space technology (45). In reality,

a satellite might be time-sharing this computer between navigation,

attitude determination, data annotation, health and maintenance func-

tions, etc. This research looked into the tradeoff between computer

time allotted to navigation and the precision to which the position can

be estimated.

Data Simulation

To simulate a satellite in space taking measurements, a simple pro-

cedure was followed. As shown in Figure 3-1, perfect data was first

generated using an accurate truth model [the Jet Propulsion Laboratory's

Artificial Satellite Analysis Program (ASAP) (28)]. The true orbit was

absiatd to be adequately represented by a model consisting of an Earth

with a 6 x 6 gravity field and an oblate, rotating, exponential atmo-

sphere. The geopotential values employed are tabulated in Appendix A.

Further, third-body effects were limited to those due to the Sun and

moon. (For completeness, note the initial Earth, Sun, moon, and
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* satellite positions were arbitrarilytied to anepoch date ofliJanuary

1988.) Simulated data was generated from this true state model. Then

to reflect "the real world" of imperfect instruments, zero-mean discrete-

time white Gaussian noise was added to the data (32:9; 44:5). The

"noisy" data was then fed into the microcomputer as if it were onboard

receiving stLasor dat'=. (The effect of biased noise was investigated as

a special case. Results are presented in Chapter V.)

The estimator's performance was evaluated by comparing the esti-

mated position with the true position over an adequate number of Monte

Carlo runs. To determine how many individual simulations were needed to

be "adequate," the number of runs included in the Monte Carlo analysis

was increased until consecutive results ceased to show any significant

change. The true standard deviation in the error of the estimate was

* obtained and compared to the corresponding standard deviation estimate

predicted by the filter, allowing the filter to be "tuned" to match pre-

dicted error with the true error. This comparison is also shown in

Figure 3-1.

Summary Of Research

The primary goal of this research was the development of an algo-

rithm to not only generate a satellite's position from sensor data, but

to also predict future positions when necessary. This procedure was

developed for a satellite consisting of star sensors, an Earth sensor,

and a microcomputer. Onboard software includes a general perturbations

model for the dynamics and a filter to produce position estimates from

imperfect observations.
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The uniqueness of this study lies in three aspects. First, only

currently available technology is exploited. This approach insures

minimum implementation delays and costs. Second, the two-step approach

to estimating drag effects is not, apparently, used in orbit determina-

tion at the present time, particularly in an autonomous situation.

Finally, the use of this general perturbations model to describe the

dynamics in a space-based autonomous system is new. In particular, a

modification of Aksnes' model to include drag effects is unique.

0
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IV. The Formulation of the Short-Term Estimation Problem

The problem of a satellite autonomously determining its orbital

position can be termed a short-term estimation problem since the times

between estimates are short. Descriptively, this can be referred to as

the "Where am I?" problem. All of the studies covered in Chapter II

were capable of solving this problem. Each combined an estimator, some

sort of dynamics model, and data observations to accomplish the task.

In that respect, this study is no different. Rather, the uniqueness in

this research is in the novel combination of software and hardware that

allows an accurate system to be put into operation utilizing only cur-

rently available resources.

The Filter

Mathematically, the problem at hand is to estimate the state x(t

of a system for which an approximate nonlinear dynamics model is known

x(t ) - f [x(t), t l (4-1)

where x(t ) is the state at the epoch time t . Note, f is a closed-
0 0

form (analytic) solution to the equations of motion and not a set of

differential equations. Further, at time t a scalar observationi

z(t.) is made. This observation is related to x(t.) by the following
1 - 1

nonlinear observation relation:
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z(t ) h[x(tl + v(t.) (4- 2

v(t) is zero-mean discrete-time white Gaussian noise, independent of

x(t ), with a variance of Q. Recall, f is only an approximate solution

and not exact, so Eq. (4-1) contains errors that must be dealt with in

some manner. This will be accomplished shortly by adding process noise

of the form Cw (At) when Eq. (4-1) is linearized.
n

All of the approaches previously described produce state estimates

from imperfect data, with the state being the spacecraft's position and

velocity or, equivalently, a set of orbital elements. For best results,

the effect of noise in the data must be minimized in a statistical sense.

Since this is precisely the function of a filter/estimator, navigation

problems lead to the application of some sort of estimator (18:557;

32:4-5). For example, Mease, et al. (34) and Metzler (35) employed

Kalman filters, while J. Ward used both least-squares and Bayes filters

(42). These algorithms, and others like them, combine all available

measurement data, plus prior knowledge of the system and the precision

of the data, to produce an estimate of the state.

Filter Choice. As noted above, various estimation algorithms could

be employed for this problem. These include the least squares, the

Bayes, and the various forms of the Kalman filter. In this situation,

however, the selection of which filter to employ is more a process of

elimination than a choice. This is a real-time application, so the

least squares and Bayes approaches are undesirable because they require

a matrix inversion on the order of the state vector. This leaves the
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various forms of the Kalman filter as they only involve a matrix inver-

sion on the order of the data vector (a scalar in this application)

(44:100-102).

Due to its numerical instability, the conventional Kalman filter

should not be selected for use in small computers (9:95-100; 32:236;

39:1-3; 44:104-105). Factorization, or so-called "square root" and

"U-D," formulations of the Kalman algorithm, have, however, demon-

strated their stability and accuracy (9:77,149; 13:1; 16:444; 24:223;

39:2). According to Maybeck, square-root filters can yield twice the

effective precision of conventional Kalman filters in poorly conditioned

problems (32:369). U-D formulations also have this numerical robust-

ness, but do not require the computation of numerous square roots; thus,

they can be the faster than square-root filters (40:111-89).

In particular, the Bierman-Thornton U-D filter has been shown to

be a numerically stable alternative to the Kalman formulation (32:399;

39:2). Its superiority for this type of problem has been demonstrated

in other orbit-determination problems (17; 39; 43). Junkins goes so

far as to say that the U-D filter is "superior to all known methods"

when propagating the covariance matrix from one observation time to the

next (24:223). This formulation involves factoring the covariance

matrix into the form

P - UDUT (4-3)

where U is a unitary upper triangular matrix (unity on the diagonal of

an upper triangular matrix) and D is a diagonal matrix. Thus, this

0
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filter computes and propagates U and D (and, of course, a state esti-

mate, x) rather than P.

In spite of its apparent complexity, the computational burden of

this filter is comparable to that of the Kalman filter. Numerical

studies by Thornton and Bierman demonstrate this fact (39:25). Ana-

lytical opeLation counts further support this finding (9:78,84-90;

32:402-404). Even the storage requirements for this filter can be shown

to be comparable to the Kalman algorithm if care is -aken to exploit the

special forms of U and D (40:111-89). While the problem at hand is non-

linear and the above observations based on linear formulations, one

would expect these statements to hold true in general.

As just stated, the problem studied is nonlinear; in fact, it is

highly nonlinear. Iterated, extended formulations are capable of pro-

viding better performance than their linear or extended counterparts in

situations such as this (33:58-59). For this reason and all of those

cited above, an iterated, extended form of the U-D filter was selected

for use in this research. To help introduce the notation, the form of

the U-D factorization filter employed in this research will now be

derived.

Iterated, Extended U-D Filter Derivation. The U-D formulation is

really just a mathematical rewriting of the Kalman algorithm. More pre-

cisely, since this is a nonlinear problem, the filter to be derived is a

reformulation of the iterated, extended Kalman filter. Simply put, this

is an iterated form of a linearized factorization filter. For the deri-

vation, it is sufficient to start with the iterated, extended Kalman

filter as cited by Maybeck (33:39-45,58-59).
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First, some notation should be introduced:

(a) x(t) and x(t) are estimates of the state at time t

before and after the the incorporation of the observation at
time t , respectively.

1

(b) P(t-) and P(t+) represent the covariance matrix before
I I

and after incorporation of the observation, respectively.

(c) x (t') is the current reference trajectory about which~ref'

linearization of the observation relation occurs.

Thile this notation is explicit, it is also a bit cumbersome. When no

chance of confusion exists, it will be simplified. For example, x(t)

will be written as x(-), P(t+) as P(+), K(t) as K, etc.

The linearization of Eqs. (4-1) and (4-2) is given by

S
x(t +1) = (t ,t )x(t ) + Cw (At)i+ i+l i i n

(4-4a)

z = Hx(t ) + v(t)1 1

where:

,D(t t af (4-4b)
i+1' di xJ

ref

H - h (4-4c)
x

ref
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w (At) is a discrete-time function that describes the error in the

state estimates due to modeling errors if f and the linearization

(32:145-146). For the purposes of the filter, w (At) can be assumed,

for lack of any better assumption, to be zero-mean discrete-time white

noise. Indeed, if the error is comprised of many small, random errors.

then the Central Limit Theorem states that the function will approach

caussian (32:109; 44:5,7). Any error in this assumption can be emniri-

cally accounted for when the filter is tuned. The matrix C describes

how w (At) affects each state. D(t ,t+ ) is well-known as the staLe

transition matrix.

The Kalman gain is given by:

K - P(-)HT HP(-)HT + Q] (4-5)

S

Note that, since the observation and, hence, Q, is a scalar quantity,

the inversion in Eq. (4-5) is simply the reciprocal of a scalar.

In the iterated, extended Kalman filter, it is necessary to revise

the reference state at each iteration. This revision is given by

Xref - X(-) + 6x (4-6a)

where

Sx - K z - h - H x() -rf] (4-6b)

with h and H evaluated using x . A useful stopping criterion for
ref
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the iteration scheme is to repeat the procedure until every correction

to the state is smaller than its associated uncertainty; i.e.,

5x X P (-) (10:18; 42:101; 44:67).

The equations relating estimates before and after an observation

are referred to as the update equations. These are

X(+) - x (4-7)ref

P(+) = P(-) - KHP(-) (4-8)

where x is the reference state from the last pass of the iteration

scheme and H is evaluated using x(+).

The last step needed to complete the procedure is a set of equa-

tions to propagate the state estimate and covariance forward from time

t to time t . These are simply
i j+l

x(t i+) f X( 't +11 (4-9)

P(t ) -(t ,t )P(t+)DT t ( ,t ) + CQ (At)CT (4-10)
i+ ~ 'i i i~iin

where f [X(),t] is a closed-form set of dynamics equations re-

lating the states at t÷ and t- and Q is the covariance of the
i i+1 n

dynamics driving noise w (32:220; 44:109). The product CQ CT serves
n n

two purposes. First, it corrects the covariance matrix to account for

uncertainties in the dynamics model over At. Thus, the filter-computed

statistics can be made to match the true statistics. Second, it allows

0
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the filter to be "tuned" to prevent the covariance matrix becoming

singular -- a disastrous condition for sequential filters (33:23-28;

44:105-106).

T
To determine the elements of CQ C , Monte Carlo simulations can

n

be performed. By running a sufficiently large number of simulations,

the elements of this matrix product can be varied until the filter-

computed covariance, P(+), is representative of the true statistical

error in the estimate. In other words, diagonal elements of the

covariance should at least approximate the true variances in the state

estimates and off-diagonal terms should be representative of the true

correlation between the states.

Eqs. (4-4) through (4-10) can be assembled to form the iterated,

extended Kalman filter. This is best visualized when written as a

computer-style flowchart (See Figure 4-1).

To convert this algorithm into a factorization algorithm, recall

chat any n x n symmetric, positive semidefinite matrix can be factored

as

P - UDU (4-11)

where U is an n x n unitary upper triangular matrix and D is an

n x n diagonal matrix (32:392). Noting the covariance matrix meets

these restrictions and observations are scalar quantities, the Kalman

gain [(Eq. (4-5)] can be written

K - U(-)D(_)UT_()H (4-12a)
a
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Figure 4-1. Algorithm for Iterated, Extended Kalman Filter

(Part 1 of 2)
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P ) ýD(t 't )P(t+'T(t t) + CQ(At)cT Covariance
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0 Figure 4-1. Algorithm for Iterated, Extended Kalman Filter

(Part 2 of 2)
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* where:

a - HU(-)D(-)U T (-)![{ + Q (4-12b)

Similarly, the covariance update equation [Eq. (4-8)] can be fac-

tored to give:

U(+)D(+)U (+) - U(-)D(-)UT(-) - KHU(-)D(-)UT(-) (4-13)

Incorporating Eqs. (4-12) and factoring the right-hand-side, this

becomes:

U(+)D(+)UT(+) =U(_) D(-)

(4-14)

-(1J [D( )UT(-H T] [HU(-)D(-)]} UT(_)

Since D(-) is diagonal:

Tt_

D(-) - DT(-) (4-15)

Thus, Eq. (4-14) can be rewritten:

U(+)D(+)UT(+) -U(_){D(-)

(4-16)

- [ T( uT-)
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If there are n state variables, then the n-vectors f and v

can be defined as:

f - U (-)H, (4-17a)

A

v - D(-)f (4-17b)

Then, Eq. (4-16) can be simplified to read:

U() +U(+) _ U(_)[D(-) - f(1 T]UT(_) (4-18)

If the bracketed term is a positive, semidefinite, symmetric

matrix, it coild be factored as:

ED(-) T (ijb' -UDT (4-19)

Symmetry is apparent, but the proof of positive, semidefiniteness for

the general case is non-trivial; however, for the scalar case it is

simple enough to warrant inclusion here. For scalars:

a - H2 U2(-)D(-) + Q (4-20a)

f - U(-)H (4-20b)

v - D(-)f - D(-)U(-)H (4-20c)
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Therefore,

D(- - vv D(-) - D2(_)2 (-)H 
2

) -T H2 U 2(-)D(-) + Q

(4-21)

1D(-) 1 + 1 Q

D 1 - H2 (-)D(-)

Since Q and D are nonnegative,

1 + Q > 1 (4-22)
H U (-)D(-)

Thus, Eq. (4-21) can be written:

[D(-) I (IvvT] ýý D(-)[1 - I]=0 (4-23)

Or, simply:

[D(-) - alr (4-24)

Clearly, from Eq. (4-24), the assumption of positive, semidefiniteness

(and, trivially, symmetry) is founded for at least the scalar case. The

proof can be extended to the general case in a straightforward manner

and will not be included here (8:656-658; 32:216).
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Accepting the factorization as given in Eq. (4-19), the covariance

update equation [Eq. (4-18)] becomes:

= UT) U(_)[UDTIJUT (4-25)

Or, regrouping the right-hand-side:

U(+)D (+)UT(+) = [U(~UDU~U (4-26)

U(-) and U are both unitary upper triangular, so the following

equivalences can be made (31:393):

U(+) - U(-)U (4-27a)

D(+) = D (4-27b)

Thus, the covariance update equation has essentially been reduced to

the factoring of a positive, semidefinite, symmetric matrix as given in

Eq. (4-19).

Assuming U(-) and D(-) are available, Maybeck cites an effi-

cient computational algorithm (originally due to Bierman) for computing

U(+) and D(+) (32:394). This algorithm is given below as Eq. (4-28).
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f =UT (-)HT

v =D(-)f j =1,2. n
J JiJ -J

a =Q

a =a + fv
1 0 1 1

D D+ = -

b =v1 1

a =a + fv
k k-i1 k k

D(+) = D (-k-]

b k v k 2,3 ,. .. ,n

S 1k =2a..]

U j+ k U i(-) + bJpk

j j .jk k
=b +U (-)v J

(4-28)

The algorithm given by Eq. (4-28) constitutes the covariance update

equation while the state update equation is still given by Eqs. (4-6)

and (4-7). Note, in ill-conditioned problems, the Kalman gain used in

Eq. (4-6b) is best obtained from

b
K --- (4-29)

a
n
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once the algorithm above has been completed (32: 394). The state and

covariance propagation equations from t+ to t arc yet to be
j i+1

cited.

The state propagation equation [Eq. (4-9)] remains unchanged:

X(t =f[X(t+),t]~l (4-30)

As a first step in deriving a factored form of the covariance

propagation equation, Eq. (4-10) is factored to give:

P(t- ) - ýD(t ,t )U(t +)D (t )UT(t )ZT (t ,t + GQ (At)GT (4-31)
i+1 i+1' i i i+i1 n

Without loss of generality, Q ncan be assumed to be a diagonal matrix.

nn

factors of a nondiagonal (but symmetric) noise matrix (32:396).

It is easily verified by direct substitution that Eq. (4-30) can be

written as

P(t )-Y(t -)D(t -)YT (t (4-32a)
i+1i i+1 j+3. j+1

where:

Y(t )-[(t ,t )U(t+) C] (4-32b)

i+ i+i 1

D,(t+) 0
)-t I~ (4-32c)
i1 I 0 Q (At)L ~n J
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Note that Y is n x 2n and D is 2n x 2n if C is assumed to be

n x n.

To keep the covariance in factored form, it is necessary to apply

Eq (4-31a) such that:

P(t ) = U(t )D(t )UT(t ) (4-33)

Maybeck cites an efficient computational algorithm (originally due to

Bierman) for obtaining the factors U(t ) and D(t i+) from

Eqs. (4-32) (32:396-397). The procedure can be given as:

YT 
-

Let = Y (t+)

0
C =D (t )a j =l12,....n

jk jj i 1 i

-T

D (t- ) = a c
kk i-+1 -k-k

c
d= -k k-k

-k D k(t ~)d k- -k k n, (n-l) .... 2

Dkk (i +1

U (t - ) - aTd d
kj-k j - 1,2, (k-i)

a i j U (t+1 )a

c -i D jj(t +1)a ji j - 1, . ..2

- T
D (t ) -a c

11 i+1 -1-1

(4-34)

0
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In this notation, c is element j of column vector k. A similarSC k

statement can be made about the n column vectors a . Upon completing
-k

the procedure above, the propagated covariance can be assembled and

inspected by multiplying out Eq. (4-33) if desired. But, the filter

should not employ this assembled form when precision is important.

Finally, with all of the necessary equations at hand, a computer-

style algorithm for the iterated, extended form of the U-D filter can

now be presented. This is given in Figure 4-2. Notice, the filter

iterates on U(+) and D(+) simultaneously with the state. This is

required to obtain the Kalman gain in the most numerically precise way

[Eqs. (4-28) and (4-29)]. If the covariance update could be moved out

of the iteration loop somehow, then the total number of computations in

the algorithm could be reduced.

In the problem studied, there was enough numerical stability in the

update step to allow the Kalman gain to be calculated by

K - P(-)H (4-35)
a

instead of Eq. (4-29). In fact, the difference in gain found by the two

methods was identical to 13 - 14 digits once convergence was achieved.

Thus, it was experimentally determined the filter could be slightly mod-

ified for enhanced speed as shown in Figure 4-3. It must be emphasized

that the above modification to the U-D filter will, in general, reduce

the numerical precision but does not in this particular situation. When

in doubt, Figure 4-2 presents the preferred implementation.

0
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When dealing with imperfect instruments in real-world situations,

the possibility that some measurements will be greatly in error exists.

It is, therefore, desirable to provide some sort of mechanism to reject

"bad datq" and minimize their effect on the estimated parameters. Two

schemes are immediately applicable: residual checking and maximum

iteration limits.

The first, residual checking, compares the actual observations,

z(t), to those expected, h[x(t)]. If these differ more than a pre-

determined amount, then that datum is ignored and the state, x(t),

propagated to the next observation time. This method requires an extra,

albeit trivial, computation of z(t) - h 2(t at each observation.

A maximum iteration scheme, on the other hand, sets a limit on the

number of times the filter is allowed to iterate before giving up. If

-his limit is exceeded, that datum is ignored and the state propagated

to the next datum.

The latter scheme, maximum iteration limits, provides protection

against bad data in addition to solving another problem inherent to many

iteration schemes. Due to numerical truncation, state estimates may

oscillate about a solution. Includii, a limit on the number of itera-

tions prevents an "infinite loop" from developing; in fact, a maximum

iteration check must be incorporated even when applying residual

checking. In this research, it was only necessary to limit the itera-

tions while ignoring the residual. For reference, the maximum number of

iterations was set to seven for all orbits. This number was selected by

trial and error to be more than twice as large as the typical number of

iterations required for convergence.

0
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For the navigation problem at hand, this filter can be directly

applied once a dynamics model f has been selected and the observation

quantities in Eq. (4-2) derived.

The Dynamics Model

As mentioned, it is necessary to have a dynamics model available to

propagate the state estimate forward from one time to another. Alge-

braically, this is given by:

x(t ) = f[x(t ),t ] (4-36)

Note that process noise is not shown in Eq. (4-36). The previous sec-

tion only added process noise for the linearization of the dynamics.

This, in essence, says the dynamics are completely deterministic and the

majority of the uncertainty is introduced in the linearization. Fur-

ther, any errors that actually do exist in f are accounted for when the

filter is tuned. Two approaches exist for obtaining dynamical equations

of the form above: numerical integration of differential equations of

motion and closed form (general perturbations) solutions. Regardless of

which method is used, real-time applications require this propagation to

be a "fast" operation.

Many previous studies have used numerical integration (11; 17; 22;

34; 39; 42). Precise numerical integration of dynamical equations

requires more and more computations as the time between observations

grows. For real-time operations on small computers, this can be
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unacceptable because the filter might not have time to complete one

update before the next datum becomes available (44:77,118).

General perturbations methods, on the other hand, require the

same number of computations regardless of the time step involved. This

advantage does not come free; perturbation theories are closed-form

solutions based on small deviations from a reference orbit and remain

valid only for finite time spans. Thus, the reference orbit must be

reinitialized periodically, with the time between required reiniti-

alizations depending on the model. This does not pose a problem in the

current application; however. Each time a new datum is incorporated

and the state estimate updated, the reference orbit is reinitialized

automatically. Therefore, a general perturbations method is completely

appropriate here. The specific theory used in this research is based

on that derived by Aksnes (2; 3; 4).

Aksnes' model is a reformulation of Brouwer's first-order satellite

theory in terms of the Hill variables (4:70; 12). This change of vari-

ables allows the method to be applied even where Brouwer's theory breaks

down -- zero eccentricity orbits. Like Brouwer's, this theory includes

the J - J zonal harmonics of the primary and ignores air drag (4:70;2 5

12). Between observations, the effects of drag cannot be separated from

the imperfections in the observations and the model is still justified

as derived by Aksnes. Aksnes has shown his algorithm predicts satellite

positions to within 60 m of positions predicted via numerical integra-

tion of the corresponding differential equations (2:1075-1076; 3:32;

0
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4:70,74). This precision is obtained for a period of at least 6 days

and greatly reduces the number of computations involved (4:70).

The algorithm as derived by Aksnes accepts input and produces out-

put in two sets of state variables: a set of classical orbital elements

and a set of cartesian position and velocity elements in the geocentric-

equatorial frame. As will be seen when the observation relations are

introduced, values in the latter system must be available. The former

set, though, was replaced with the better defined equinoctial elements

(8:490-495; 27:44; 28:3-8 - 3-9; Appendix C). The reason for this

change is quite subtle and strictly for numerical reasons.

The filter employed relies on iterations about a state near the

correct one; therefore, the state variables should "behave" in a

"rational" way. In other words, a small change in one variable should

not produce an overly large change in another during the course of iter-

ating about a solution. This is not always the case for the classical

orbital elements; for example, near an inclination of zero (i = 0),

the longitude of the ascending node, 0, becomes ill-defined. Small

errors in the other elements can cause Q to vary by as much as r between

iterations. Similar statements can be made about the argument of peri-

gee, w, when the eccentricity, e, approaches zero. Since the iterated,

extended U-D "i'- . li2to .:-1ip . "rqtional" behavior, this is

completely unacceptable.

Many of the useful orbits fall into situations where one or more of

the classical elements are ill-defined, so this research chose to con-

vert Aksnes' classical elements into a set of equinoctial elements.
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These elements are well-defined for all orbits studied. In terms of the

classical orbital elements they are:

a - e cos(O + w) (4-37a)
f

a - e sin(O + w) (4-37b)
9

a - a (4-37c)

L - 0 + w + M (4-37d)

sini sinf(
X = 1 + cosi (4-37e)

- sini coso (4-37f)

1 + cosi

where a is the semimajor axis; M is the mean anomaly; L is the

mean longitude; e, i, 0, and wo have already been defined; and af , a ,

X, and 0 do not have formal names (8:490-492; 26:44). A manner in which

this the change of variables can be incorporated is shown in Figure 4-4.

The filter requires the computation of the state transition matrix

ý(t ,t) t Lf (4-38)
i+1 i 8xiii x

ref

at each observation point to propagate the covariance matrix forward

[Eq. (4-31)]. The complexity of Aksnes' equations, f, essentially rules

out an analytical computation of this matrix in real time. Numerical

precision in this step is not essential, however. Some formulations

even treat the matrix as a time-invariant constant (32:324). In this
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Classical Elements Equinoctial Elements
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x(t ) in termssi

of classical

elements

0
Figure 4-4. Orbital Element Conversion Routine

study, it was found that -D could be numerically approximated through

one-sided numerical differentiation. Approximations for 4D obtained in

this manner still produced propagated covariance matrices, P(-), which

were representative of the true errors in the states. For completeness,

note the form of the state transition matrix is:

0
4-28



Saa f aa faa f aa f aa f aaf
f f f f f f

il1 i+1 i+1 i+1 i+1 i+l

Bj -a aa aL ax a
f i i 1 1i i

aa aa aa aa aa aa
i1i+ 1+1 9i+ 9i+ 9i+1 i i+1

Ba Ba aa YL ax. aB.
f 9. i ii i

aa +1 aa +1 aa i ~ aa +1 aa i ~ aa +
Ba aa Ba aL aBX a

$Dt t f 8 i i I

aL aL aL aL aL aLitt itl itl i+1 itt itt

Ba Ba Ba aL , Ta
f 9. i i 1 1i

axi+1 axi+1 axi+1 axi+1 axi+1 axi+1
Ba Ba Ba aL ax.

fi 9. i i11

ao i+ 1 avi+ l ao i+ 1 a ki+ I a oi+ -, ao i+ 1

Ba Ba Ba aL ax aB.f g, i i 1

S (4-39)

In summary, the dynamics model employed by the U-D filter is a

modified version of Aksnes' first order theory. His theory has been

modified such that input and output variables are a set of equinoctial

elements as well as the geocentric-equatorial position and velocity.

The matrix D required to propagate the covariance forward from one time

to another is computed numerically and has the form given in Eq. (4-39).

The Observations

The essence of any navigation system is the ability to use observed

measurements to estimate one's position. For a star sensor/Earth sensor

0
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combination, relationships between observations and estimated position

are easily derived. It is also highly desirable to know the precision

of the measurements; indeed, this is a requirement to apply the U-D

filter. This can be derived as a function of given instrument accu-

racies.

Two Earth horizon sensors with their field-of-view offset but in

the same plane can detect and track two opposite edges of the Earth to

create horizon vectors. By bisecting these vectors, a line between the

center of the Earth and the satellite can be drawn. This is called the

observed local vertical vector and may differ from the true local verti-

cal by an angle SO, as shown in Figure 4-5. 68 is a measure of the

precision of the horizon sensors.

A star sensor can establish a line-of-sight vector to a known star.

The direction of this vector relative to the observed local vertical can

be easily measured. As with horizon sensors, this measurement is not

perfect. Figure 4-5 shows the assumed error 60 in this measurement.

For mathematical convenience, the observation to be used is not a

set of angular measurements but rather the cosine of the included angle

between the observed local vertical and the line-of-sight to the star.

Thus, if - is the observed included angle, z - cos-y is the data

recorded by the navigation system.

Since the observation is not perfect, its relationship to the true

included angle 0 - - 68 + 60 can be written as:

A

cosy - cosy + v(t ) (4-40)
i

0
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Figure 4-5. Observation Geometry

v(t ) can be considered to be zero-mean discrete-time white Gaussian

noise because real instruments typically exhibit suchstatistics (32:9;

44:5; 45). It is the function of an estimator to minimize the effect of

the noise in these measurements (32:4-5).

To be consistent with notation in the filter derivation, this is

rewritten as:

z(t) - h(ti)] + v(t,) (4-41)

4-31



h is termed the observation relation and is a function of the state var-

iables x.

To relate the position to a perfect observation,

z(t ) = h [(t)] = cos[-Y(ti)] , consider measuring positions with

respect to the geocentric-equatorial system. The satellite's position

vector can then be written

r = xe + ye + ze (4-42)
- x y z

where e , e , e are unit vectors. e points in the directior of the
x y z x

vernal equinox; e points out the Earth's north pole; e completes
z y

the system such that it lies in the Earth's equatorial plane and e =
z

e x e . In this coordinate system, the position vector of the satel-
x y

lite lies along uhe local vertical. Therefore, while the components of

r (x, y, and z) are unknown, their magnitudes relative to each other

are approximately known because the position vector is a scalar multiple

of the local vertical vector. This implies that information about the

local vertical can be used in determining the position vector. The

manner in which this information enters into position determination is

derived presently.

A vector pointing from Earth in the direction of any star is essen-

tially fixed in this coordinate system; that is, it remains unchanged

even when viewed from opposite sides of the Earth's orbit around the sun

(7:56-57). Thus, a star's absolute position relative to the geocentric-

equatorial system can be considered to be a krown constant vector,
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regardless of the satellite's position. Then, for any given star, there

is a known unit vector that gives its direction:

e = x e + y e + z e (4-43)

Employing the definition of the dot product between the local

vertical and the line-of-sight to the star yields

r~e

h = cos-y (4-44)

for any given time. Substituting Eqs. (4-42) and (4-43) into

Eq. (4-44):

xx + yy + zz

The known values in this equation are x, y' and z , while the

S S S

unknowns are x, y, and z. Further, an approximation to h is the

known observation z. Thus, each star sighting can be used to obtain

one component of the position (with the filter minimizing the effect of

the error between h and z).

It remains to be shown how to relate errors in the sensor measure-

ments to errors in the observed quantity z - cos7. Indeed, this is a

relationship required by the filter. To derive this, refer back to

Figure 4-5. The observed included angle is 7 while the true included
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angle is -y - -y - 60 + 60; therefore, the error in the measurement is

found by subtracting:

z6I - {cos-7 - cosT{ - Icos(-Y - 66 + 60) - cosTl (4-46)

Expanding out the first term on the right-hand-side:

A A A

I6zt - [cos(- 66 + iO)cos7 - sin(-60 + 6k)sinj - cos7I (4-47)

Since 66 and 60 are, presumably, small pointing errors, the small angle

assumptions

Cos(-66 + 60) = 1 (4-48a)

sin(-60 + 60) = -60 + 6S (4-48b)

can be introduced. This reduces Eq. (4-46) to:

16zl - 1-(-68 + 64)sin-yI (4-49)

Squaring both sides and recalling that the observed quantity is

z - COSy:

(6z), (60)2 _ 2(6064) + (64)2] - z2) (4-50)

Finally, the standard conditional expectation operator (32:95; 44:10-12)

can be applied to both sides to yield

a -_G + C4 ( - Z_ - Q (4-51)

4-34



where, since 0 and 0 arB measured by different instruments, it has

been assuined that SO and So are statistically indepenclent. Note,

the term ( 1I z 2) comes through the operation unchanged because the

expected value of a measurement is the true value (44:12). c , c 0, and

a 4 are the standard deviations of the measurement, the horizon sensors,

and the star sensor, respectively. a 0 and a 0 are given by sensor

manufacturer or can be determined by experiment. The term or + C 2 can

be considered to be a measure of the composite instrument variance,

2 2 2

c is the term that will be needed for the filter to determine the
z

accuracy of the position estimate. The information contained in a is
Z

used by the navigation filter to produce standard deviation values for

O the state estimates. Once Earth and star sensors are selected, this

number depends only on the obser-vation z since z -z (Cr ompI 2)a

given in Eq. (4-51).

Since at any point the modified Aksnes' theory has available the

geocentric-equatorial coordinates as well as the equinoctial elements,

the observation relation [Eq. (4-45)] and its variance [Eq. (4-51)] can

be readily evaluated. The estimator, through Eq. (4-4c), requires the

computation of the row vector

8H--A (4-52)

where x is the state in use by the estimator, in this case the equi-

noctial elements. Thus, the chain rule must be applied when forming
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Eq. (4-52) from Eq. (4-45). Designating the coordinates in the

geocentric-equatorial system as x and the equinoctial elements as

simply x, the row vector H can be written as:

H- [ 8h '- .- e- (5-53)8x aI x

[he-term x---- [L L can be analytically calculated
_ a-_.I a ay a z ax ay z

from Eq. (4-45)

T

x r - + yy + zxx

3
r

y5r 2 _ y (xx S+ yy~ S+ z z).

[h r

x 
(4-54)

g -el z r2 - z xx+ z

3

r

0

0

0

with x, y, z, x, y, z being the geocentric-equatorial position and

velocity components. r - ý2 2 22 is the orbital radius. Thex +y +z

matrix I--- is best calculated though numerical differentiation of
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the modified Aksnes theory. For completeness, though, note that this

term is of the form

ax ax ax ax ax ax
-a _aa a TL T TO
f f

y ay ay ay
aa aaa 8a aL ax a

f S

1 az az az az az az
ax a aa aj Ta TL TxE--l-f (5-55)

ax ax ax ax ax ax
aa aa a--a TL TX Tf 9

ay ay ay ay ay
aa aa aa al ax aof S

az az az az az az
0aaa a- T ---L T

where a I a ,a, L, X, and • are the equinoctial elements previouslyf a

defined. Therefore, the row vector H can be easily assembled at any

point once the terms in Eqs. (4-54) and (4-55) have been computed.

This subsection has derived all of the observation relations

required by an auitonomous navigation system. A more detailed analysis

of this and similar methods for obtaining a celestial position fix is

given by Battin (8:623-641).

Now that all of the necessary components of an autonomous naviga-

tion have been introduced (filter, dynamics model, and observation

0
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relations), it is appropriate to present a summary of how these tie

together.

Tying It All Together

The estimation problem at hand is addressed through the application

of a factored form of the Kalman filter; in particular, an iterated,

extended form of the Bierman-Thornton U-D factorization is used. The

dynamics model selected for use by this filter is a modification of

Aksnes' general perturbations model. Algebraically, this is given by

x(t)- f[x(t.),t] (4-56)

where the state x is a set of equinoctial elements and t is an
0

epcch tin.e fc-:x which an estimate of the state is known.

The observation relations required by the filter are:

z, -cosyi + v (4-5,a)

h - cos-y (4-57b)

2 a (1 (4-57c)
i 2 comp -i

-. is the included angle between the local vertical and the star

sighted at time t . v is Gaussian noise with the properties pre-i i

viously described at t . The composite instrument variance,i

2 2 2aCoMP - a0 + a 2 is a known value.
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Together, the filter, dynamics model, and observations form a

system capable of estimating an Earth-satellite's celestial position.

The instrumentation required to obtain data is hardware currently on

many existing satellites (42:14). Thus, the implementation of this

scheme could be virtually immediate.

The accuracy and versatility of this configuration can be fully

appreciated when demonstrated via accurate simulations. The next two

chapters present Monte Carlo results for a standardized test orbit, low-

Earth (US Space Station) orbit (15), semisynchronous (GPS/NAVSTAR) orbit

(14:34-35; 17:69; 22:589; 30:3), and synchronous orbit.

0

0
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V. System Characteristics

Before applying the system derived in the last chapter to specific

spacecraft, it was useful to study as many aspects of the configuration

as possible. This was accomplished by creating a "generic" test orbit

and varying parameters of the filter and orbit individually. The base-

line test orbit had the initial osculating classical orbital elements

(7:58-60; 27:65; 37:25-28, 82; Appendix C):

a = 9000 km (5-1a)

e = 0.2 (5-1b)

M = 100 (5-1c)

i = 300 (5-1d)

w = 400 (5-le)

0 - 500 (5-1f)

Or, in terms of equinoctial elements (8:490-495; 27:44; 28:3-8 3-9;

Appendix C):

a - 0 (5-2a)
f

a - 0.2 (5-2b)

S

a - 9000 km (5-2c)

L - 1000 (5-2d)

X = 0.2053 (5-2e)

= 0.1722 (5-2f)
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This orbit was selected for two reasons. First, it is high enough

to be virtually free from the effects of atmospheric drag, yet low enough

to avoid significant third-body perturbations from the Sun and Moon.

Second, this orbit is non-zero in all of the classical elements; there-

fore, the effects of driving certain terms to zero could be investigated.

For this baseline design, observations were taken approximately

13 1/2 minutes apart (a 0.00124 Hz data rate) with instruments accurate

to 0.010 (a = 0.010). The star sighted was whichever star in the
c omp

onboard catalog was nearest the orbit plane and not behind the Earth at

any given time. (The 14 stars in the onboard catalog are listed in

Table A-2 of Appendix A.) The standard deviations of the initial errors

were 6 km and 6 km/week in each component of position and velocity,

respectively -- well within the capabilities of traditional means at

NCMC (42:63; 45). The baseline parameters of the satellite, filter

and orbit are summarized in Table 5-1.

It should be noted, however, that the initial covariance matrix

given to the filter, P(t=O), represented errors twice those cited

above. This eliminated all numerical failures (division by zero, etc.)

during the initial acquisition transient (filter initialization) by

artificially deweighting a priori information. In fact, the trick of

"lying" about the initial error by a factor of two was so successful

that it was applied to all orbits studied, thereby making the system

much more robust.

0
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Table 5-1. Baseline Configuration

Initial Orbital
Elements: Classical Equinoctial

a = 9000 km a = 0
f

e 0.2 a -0.2
S

M - i00 a = 9000 km

i - 300  L - 1000

w= 40 0  X = 0.2053

S- 500  = 0.1722

True Initial
Position Error: 10.4 km (la)

True Initial
Position Error: 10.4 km/week (1a)

Coeff. of Drag: 2.0

Effective Mass: 2000 kg
2

Effective Area: 10 m

Data Rate: 0.00124 Hz

o r 0.010

t : 00 (In the orbit plane)target

Figure 5-1 shows the Monte Carlo results for a small portion of

time over which the U-D filter was operated. Graphed is the actual (or

"true") root mean square (RMS) value of the position error and the root

mean square of thLe pos!LicL• error as computed by the filter [via the

covariance matrix P(t+)]. These curves represent the actual and

filter-computed RMS errors [or standard deviations (a)], respectively,

as labelled in the figure (44:110-111). Periodic oscillations can be

seen in both the actual and filter-computed values. This is a function

5-2



-4
-,0-...... Filter-Computed Position RMS ErrorActual Position RMS Error

4-

-..... \ /\

-I I
-4 V

"", ' ' I 2 , 3 1 4
l!III [ '

i3\ f kl ""' t I I!

Orbi NumI b e

F if t 5-1 MI I Resul ts fr T

"o" 'n' m d l 4 7 ) Whe plott e ove lo ge ti e , h s"vr a

• :+0o ~\\j i

o theref oei I i I to I I I i val o an!011 12 13 14 15

Orbit Number

Figure 5-1. Monte Carlo Results for Test Orbit
(Short Timespan, Unsmoothed Output)

of Aksnes' model (4:74). When plotted over longer times, these varia-

tions tend to "bluru the graphs and distract from overall trends. The

oscillations are regular with periods essentially equal to the orbital

period; therefore, it is beneficial to average their values over an

orbit to "smooth out" the appearance of the graph for presentation. To

minimize the loss of information about this variation, it is also desir-

able to calculate the standard error of the mean over one period for

these quantities

SSD
SEM - (5-2)
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where SSD is the sample standard deviation (either the actual RMS

error or the filter computed value, whichever applies) and N is the

total number of points used in the computation of the SSD. For most of

the remaining plots in this research, curves such as those in Figure 5-1

are replaced by two sets of lines each. Each point on these curves

represents the mean RMS error values (both actual and filter-computed)

over an orbital period plus and minus one standard error. The curve

pairs are meant to give an indication of the upper and lower bounds of

the a's during an orbit.

Figures 5-2 illustrate the difference smoothing makes when long

times are plotted. An artificial periodic trend is introduced into the

plot of the actual RMS error. This is due to averaging over an integer

number of observations rather than an exact orbital period. The arti-

ficial trend is much smaller in magnitude than the original oscillations

so averaging still serves to enhance the legibility of the results.

The previous chapter alluded to the necessity of tuning the esti-

mator with a pseudonoise matrix, CQ C T; indeed, Figures 5-2 were pro-
n

duced with a "tuned" filter. Figures 5-3 illustrate tuning the filter

to prevent divergence. In general, this is done by varying CQ CT,
n

running a Monte Carlo simulation, comparing the actual RMS value of the

position error to the filter-computed value, and repeating the procedure

until the two values are approximately the same and the noise is as

small as possible such that the filter can run "forever" without

diverging (32:337-339). Precise tuning was not attempted in this

research; rather, the elements of CQnCT were determined to approxi-
n

mately the correct order of magnitude. [Note, when the predicted
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st-ndard deviation exceeds the actual, then the filter is termed "con-

servatively tuned," a commonly adopted goal (32:339)] The baseline
= 1013 1

design was tuned with Q diag 4.1 x 0, 4.3 x 1013,

-10 2 -13 2, -12 13
4.1 x 10 km 1.0 x 10 rad, 1.6 x 10 7.9 x 101 and C set

)

equal to the 6 x 6 identity matrix. Figure 5-3b shows that, wl~h this

level of pseudonoise, the average steady-state error for the baseline

configuration was about 650 m. All forthcoming results were obtained

with this pseudonoise matrix unless indicated otherwise.

Variation of Onboard Factors

Certain parameters in the design of this autonomous navigation

system can be varied. These include the data observation rate, the

precision of (as well as the tolerated bias in'. the onboard instrumenta-

tion, and the target star sighted to form the angular observation. All

of these factors have a direct impact on the accuracy to which a satel-

lite's position can be estimated, so it is appropriate to investigate

the effects of varying each factor.

The Effect of Varying the Observation Rate. A satellite may not

have an onboard computer dedicated solel to orbit deteimination;

instead, the spacecraft may time-share a computer between navigation,

attitude determination, health and maintenance functions, etc. Thus,

the tradeoff between computer time allotted to navigation and the pre-

cision of position estimates was studied.

As the time between observations increases, one expects the error

in the position estimate to grow as well, necessitating the need t,

retune the filter. If the errors in Aksnes' model are assumed to grow
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linearly with time, then an estimate of the error covariance can be

obtained by applying the standard conditional expectation operator to

the state errors:

T
6a At 6a At

f f

6a At 6a At
9 g

P =E reeT) =E 6a At 6a At (54)
6L At 6L At

6X At 6X At

60 At 6- At

Expanding this out yields:

2 2 2 2 2 2or or a ar a a0 f f fag f f f f

2 2 2 2 2 2
a a 2 a a a2 a 2

aa aa aa aL aX a

2 2 2 2 2 2

f a
P-Atz (5-5)

e
2 2 2 2 2 2

a o a a a aCLa La La LL LX LI
f a

2 2 2 2 2 2
C a a a a a

Xaf Xa Xa XL XX x0

2 2 2 2 2 2

This is a reasure of the growth in the covariance between observation

times; therefore, it is a first guess at predicting the necessary

changes in the pseudonoise matrix, CQ CT, when data rates change.
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Thus, one would expect the "tuning factors" in CQnCT to increase

quadraticly as the time between observations increases.

In the baseline configuration, Q - diag (4.1 x 10-13,

-13 -0 2 -13 2 -12
4.3 x 10 4.1 x 10 km , 1.0 x 10 rad , 1.6 x 10

7.9 x 10-' 3 and C = 16x6 sufficiently tuned the filter to avoid

diverge.nce. Eq. (5-5) indicates this should be modified such that

Qn - Q (5-6)
1At

when the time between observations changes from the baseline. In terms

of conventional units, this implies the pseudonoise matrix for any data

2 15 i 2 -15 -n2
rate is CQ C diag 2.3 x 10 min , 2.4 x 10 i m ,

n
-12 2 2 -16 2 2 -15 -2

2.3 x 10 km/min , 5.5 x 10 rad2/min , 8.8 x 10 min

4.4 x 10-15 min2)At2 where At is the time between observations in

minutes.

Figure 5-4 plots the average steady-state position RMS error against

the time between observations. To produce this figure, the estimator

was retuned in the above manner as At was changed from the baseline.

Although not perfectly tuned, the estimator does not diverge in the

range studied. It does, however, underestimate its own error when

At < 10 min. Similarly, for At > 10 min, the filter overestimates its

error (conservatively tuned). Notice also that varying the observation

rate by a factor of eighty only yields a change in precision of slightly

more than a factor of three.
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In Figure 5-4, the filter over- and underestimates its own error to

a large degree. This indicates the assumption CQ CT c At2  is pessi-
n

mistic. A better assumption is a direct proportionality between time

and pseudonoise; i.e., CQ nC T At. Results obtained by retuning in

this manner are shown in Figure 5-5. Predicted and actual values for

the position standard deviation (RMS error) remain at a more constant

separation than in Figure 5-4. Further, the values only vary by a

factor of 2.7 over the entire range.

Several conclusions can be drawn from these figures. First, the

error growth between observation times is not as bad as a linear depend-

ence; rather, it is closer to varying with At 11 . Second, the relative
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n

insensitivity of the precision to the data rate allows a wide latitude

for time-sharing of computer time. Finally, the error can probably be

reduced further with higher data rates, although it should level out as

numerical precision limits in Aksnes' model are approached. Studies on

an 8 MHz 8088-based microco;omputer with an 8087-2 coprocessor indicate

that only 5.6 seconds are needed per iteration of the U-D filter. With

a maximum of seven iterations allowed, a computer of this class dedi-

cated to navigation is capable of incorporating a new datum every 39

seconds.
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The Effect of Instrument Precision. One strength in the system

proposed is its use of off-the-shelf hardware. The baseline precision

of the star sensor/Earth sensor combination (a - 0.010) can be
comp

obtained with currently available devices while several systems de-

scribed in Chapter II require much more precise instruments (42:22).

Figure 5-6 compares the results obtained by "replacing" the baseline

sensor with others of varying precision.

Points representing two other proposed systems, the space sextant

and MADAN, are shown in this figure for reference (14:27-32; 17:16;

30:4-5,9). Note, however, this is not an entirely fair comparison. For

* • Test •-o~nts

_____ stuca Position RMS Error
- :e.... Qu--, .te Position RYviS Error

-• dersed MADAN Performance
• - --- vert'sed Space Sextant Performance

Soseline Configurstior

S, 1 ! I I I -7---. f

iO001 001 1

n-> ; .-•,&ste rnstrrnnrt r srec s'1i m

Figure 5-6. The Effect of Composite Instrument Precision on
Steady-State Position RMS Error
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example, the MADAN system's data rate was 1 Hz compared to the baseline

rate of 0.00124 Hz; the observed target was different and the orbits

simulated were only approximately the same '14:27-32; 17:16). These

numbers are provided only to emphasize that the system put forth in

this study compares very favorably with other proposed systems without

requiring any new hardware development.

In particular, the space sextant is a proposed system requiring

instruments precise to 0.5 arcseconds (0.000140) to estimate positions

to 244-300 m (14:32, 17:16). From the figure, it can be noted that the

system addressed in this study is capable of accuracies comparable to

the space sextant even when the onboard instrumentation is an order of

magnitude less precise (0.0010). (Although, in the range a : 0.0030
cOmp

the filter should be retuned, as it underestimates its own error.) Even

the baseline configuration is within a factor of two of the space sex-

tant results and approximately the same as the MADAN system.

At this data rate, there is nothing to be gained by employing

instruments more precise than 0.0010. Aksnes' theory cannot propagate

the trajectory between observations this far apart (At = 13 1/2 min)

without losing more precision than is recovered with the next update;

i.e., the benefit of the more precise instrument is lost during the

state propagation. To take advantage of a better instrument, the data

rate must be increased.

The Effect of Instrument Bias The star sensor/Earth sensor combi-

nation employed may not exhibit perfect zero-mean error statistics when

measuring the angle 1. Indeed, even if the sensor package displays zero-

mean error statistics on the ground, there is a very real possibility
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that launch forces will cause the instruments to exhibit a bias when op-

erated in orbit. The question then arises as to how much unmodelled bias

the estimator can "absorb" without degrading its performance appreciably.

In creating the simulated data, a constant error, Ybias' can be

added to the observed angle, T, to examine the effect of biased data.

This was done and the results are presented in Figure 5-7. The U-D

filter was not modified in any way to estimate and/or compensate for

biased data. The figure shows that constant measurement errors of up to

±20% of the baseline instrument precision (-0.0020 < o bias -- 0.002']

have virtually no effect on the accuracy of the position estimates.

--

0 - T st r'cýrts

Raserne Configurctton /

7 1 1

i rj _2 4C)

o f

Figure 5-7. The Effect of Instrument Bias on the Steady-State
Position RN4S Error
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Twenty percent of the composite instrument precision represents

quite a significant misalignment and steps to avoid errors of this mag-

nitude are taken whenever possible. In the event that the bias falls

outside this range, however, it must be estimated and removed from the

data. To accomplish this, the filter could be modified to include

Ibias as a seventh state to be estimated.

The estimation of the bias can be performed during the spacecraft's

initial checkout upon arrival in orbit. Once 7bias is determined, its

effect can be removed from every data point prior to updating the state

estimate, allowing the filter to resort back to a six-element state

vector for day-to-day operation. Aging instruments and other bias-like

phenomena may force the bias to be calculated again periodically; how-

ever, routine operations of the spacecraft could still only involve a

six-element state estimation problem of the type derived in the last

chapter. In light of this and the relative insensitivity of the esti-

mator to reasonable levels of bias, a detailed examination is not

warranted here.

The Effect of Star Selection. Star selection is not as simple as

picking a bright star and observing it. The star must first be in view;

i.e., it cannot be hidden behind the Earth. Further, the star must be

among those stored in the onboard catalog. The overall goal, however,

is to find, identify, and track the visible star which minimizes the

error in the position estimate. By looking closely at the geometry of

the problem, a few simple a priori statements can be made regarding

target stars.

0
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Consider resolving the position error vector into three components
A

along the directions er , e , and e . These unit vectors point along

the true radial, velocity, and orbit normal vectors and are referred to

as the radial, in-track, and cross-track directions, respectively. Fur-

ther, recall that noise corrupted samples of the cosine of the angle Y

form the data.

If the observed star is parallel to the orbit normal, then -

3
or 3 -? and remains constant regardless of where the satellite is in

its orbit; therefore, this arrangement does not yield any information

about the in-track error component. Figure 5-8a illustrates this fact.

Similarly, an error in the radial direction goes undetected in such an

arrangement as is shown in Figure 5-8b. Cross-track errors can be

detected; however, and this is presented in Figure 5-8c.

An observed star in the orbit plane, on the other hand, allows the

observed angle to cycle through the entire range of values, from 0 to

2n, during each orbit. This maximizes the sensitivity of the observa-

tion to in-track and radial motion. Figure 5-9 depicts the observed

angle for various spacecraft positions.

Note, when the Earth, spacecraft, and star are aligned (I - 0 and

n= n), the observation is completely oblivious to radial errors.

While obvious in the situation where the target star is near the orbital

plane, this "singularity" is possible any time the three bodies are

nearly colinear. If the vehicle lingers in such an arrangement, the

error in •he radial component of position could grow; therefore, this
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Figure 5-8c Target Star on Orbit Normal
(Ability to Detect Cross-Track Position Errors)
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situation will become of particular concern when synchronous orbits are

considered.

The geometric arguments above would seem to indicate a star ob-

served along the orbit normal would maximize the error in the in-track

and radial components, while reducing the error in the cross-track com-

ponent. The goal, however, is to minimize the total error (the magni-

tude of the distance between the true and predicted positions) and the

interplay between components is not intuitively obvious. Monte Carlo

studies are useful to investigate this interaction.

Figure 5-10 presents the steady-state RMS error resolved into coin-

ponents along e, ev and e for various target stars. The small

onboard stai -atalog implies that there are various times when known

stars did not exist exactly at the target angles shown. Instead, the

true star ob,;erved was the visible star closest to the target angle To

emphasize thc trends for analysis and remove the effects of choosing the

"next best" star, quadratic fits are shown in the figure. These cuives

fit the data quite well, especially in the region 0 t 30'.target

The figure clearly shows that the a priori insights into the be-

havior of all three components of error were correct. Overall, the

total error is a minimum (-460 m) when sighting stars approximately 220

out of the orbit plane. In summary, proper star selection is quite

important, as it can mean a factor of three reduction in error. Notice

further, the filter is well tuned initially and remains wtll-tuned

throughout a wide range of target angles.

0
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which two stars were alternately observed in a "round-robin" fashion was

performed. RMS error values for this case were approximately the mean

between those resulting from observing either star exclusively. Quite

simply, in this orbit there is no advantage in sighting more than one

, t Results in a later section will show an exception to this in

the case of high-altitude orbit.

Battin has put forth another method of star selection based on the

covariance estimate P(t) (8:687-690). Simply put, his method selects
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the available observation star which results in the maximum reduction in

the la position error sphere at time t . When applied to this configu-

ration, a Monte Carlo study indicated the steady-state RMS value of

position error was 452 m. The increase in precision with this method

over a single optimum star angle was very modest (-8 m) for the extra

computations involved. Further, actual employment of this method would

require satellites to reorient star trackers rapidly before every obser-

vation. For these reasons, Battin's method was abandoned and not applied

to any further situations.

Assembling the Best Practical Configuration. Results presented in

the last few sections allow the user to minimize the error in position

estimates by varying one parameter at a time. Observations spaced as

close together as possible appeared to be the best data rate. The star

sensor/Earth sensor combination was found to produce the smallest RMS

error values with a precision of 0.0010. Finally, the selection of

which star to be observed was shown to have quite an effect on the

accuracy of this system. In particular, it was shown that stars near

220 out of the orbit plane produced the best results for this particular

orbit. The question arises as to whether these findings can be combined

into a realistic system producing better results than were obtained by

varying the parametern individually.

If it is assumed navigation, attitude determination, and health and

maintenance functions share an onboard computer equally, then approxi-

mately a third of computer's time can be spent computing the position.

Recall, the results cited for this algorithm on an 8088-based computer

stated a maximum of 39 seconds would be required for this function.
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Most data points would require less than this, so an observation every

100 seconds (0.01 Hz) is reasonable to assume. Scaling the pseudonoise

from the baseline rate such that CQ CT o At produces the matrix
n

T-4 1 0-14 -11 2
COCT =diag 5.1 x 10 5.4 x 10 5.1 x 10 km,

14 2 -13 -
1.3 x 10 rad , 2.0 x 10 , 9.9 x 10 ). Composite instrument

precisions are limited by currently available Earth sensors to approxi-

mately 0.010; therefore, a system utilizing only off-the-shelf hardware

would be limited to a - 0.010 (42:22). In light of Figure 5-7, any
comp

reasonable instrument bias can be assumed to be zero. Finally, with

proper instrument placement, a star sensor can lock onto and track any

bright star in view that is in the onboard catalog, so it is a trivial

problem to sight a star near the optimum target angle.

Figure 5-11 illustrates the performance of a system based on a

0.01 Hz data rate, a - 0.010. and a target angle of 22.50 out of

the orbit plane. The mean steady-state RMS error is 337 m. The filter

slightly underestimates its own error at 291 m due to a minor mismatch

in the tuning, but the performance is, overall, excellent and the filter

does not diverge. Recall that the space sextant's advertised precision

is 224 - 300 m and the value oF this system to orbit determination is

apparent.

Variation of the Orbital Elements

The last chapter introduced the equinoctial elements as an attempt

to avoid problems associated with singularities in the classical orbital

elements, particularly those at e - 0 and i - 0. Since many useful

orbits involve one or both of these situations, an examination into the
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Figure 5-11. Monte Carlo Results for Best Practical Configuration

behavior of this system near these points is warranted. For example,

low-Earth orbits (LEO) can be expected to approach e - 0 with time,

so it is particularly useful to examine how the filter behaves as the

eccentricity tends towards zero (25:8,143).

If the equinoctial elements are written in terms of the

classical elements

a - e cosw (5-7a)
a

a - e sins (5-7b)

a - a (5-7c)
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T. - r + M (5-7d)

sini sinf (5- 7e)X 1 + cosi5-e

- sini coso (5-7f)
1 + cosi

where n = w + 0 is the longitude of perigee, then the

variation can be taken:

6a = 6e cosr - e sinw 6S (5-8a)
f

6a - 6e sinn + e con- 6w (5-8b)
9

6a - 6a (5-8c)

6L - 6(w + M) (5-8d)

6_sini coso 60+ s 6i (5-8e)-^ I + cosi 1 + cosi

sini sinf + cos 6

Yi+ cosi 1 + i+cosi (-Se)

Squaring and appl),rig rhe standard conditional expectation operator to

both sides yields

2 2 2 2 .2 2

-cos r + e sin Ir a (5-9a)
a ases r

ff

2 - sin2 a2 2 2 2

a ases r
58
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02 22 2 (5-9c)aa aa

2 2a = a ( 5- 9(',
LL (7r+M) ( T+M)

* snics~ 2C s inil 2 C2(-e
X (1+ oi. on (1 + cosi) I Ih11+[ ¥ 7ii)G in+i 2 -os , (5-9e)

- _________ 2r coso2 a 2 (5-9f)
+cosi ( I + i , il

where the cross terms have been ignored as a rough approximation. Near

the baseline orbit, the argument of perigee is w = 400 and the longi-

tude of the ascending node is 0 - 500. Substituting these values into

Eqs. (5-9) simplifies the expressions:

2 2 2 (5-10a)
aa Mirf f

2 2
- a (5-10b)a a ee

g9g

2 2* _ a (5-10c)
aa aa

2 2 (5- lOd)
LL (Of+M) (ff+M)

1 l+ cos5 M 1 + Cosin5 I i

'O s5O 2  o2

0X Cl+csi ]a + I -: ai 51e

*2 sini sin50°. 2 + cos500 2 (5-1f)
i + Cosi I + cosi) a5ii
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These expressions represent the uncertainty in the corresponding orbital

elements. Significant growth in any of tl-'ese terms indicates an ill-

defined e>.nent and will be reflected as larger errors in state esti-

mates. The total position error reflects a combination of errors in

all six elements and a significant error in any one element will be

reflected as a change in this total; therefore, the total is a more

important parameter than any individual component. It is sufficient

(for this study) to monitor the RMS error values for signs of a break-

down in the system as the eccentricity and inclination are independent!,

driven to zero.

Drivinq the Eccentricity to Zero. As the eccentricity approaches

zero, thle argument of th-e perigee, w~, becomes undefined as does the

longitude of perigee, xr. The mean longitude, L - ir + M, remains well-

defined in spite of the uncertainty of w. The uncertainty in Ir will

be reflected in the growth of c02 . Thus, the only term in Eqs. (5-10)

that could experience significant growth is a 2 and then only if

a rl goes to infinity faster than e goes to zero.

Another consideration involved when comparing different eccentric-

ities is the effect the target angle has on the precision of position

estimates. In other words, can a fair comparison of the RHS errors be

made by varying the eccentricity while holding the target star angle

constant? Figure 5-12 plots the steady-state RMS value of position

error against the target star angle for the test orbit with varying

eccentricities. Qutadratic approximations have been fit to the data once

again to "smooth out" the effects of a small onboard catalog and enhance
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Figure 5-12. The Effect of the Observed Star on Orbits
SVario Eccentricities

the viewing of overall trends. Note that the curves for each value of

e maintain their relative spacing for all target angles; therefore, a

fair comparison between orbital eccentricities can be made when the

observation star is held constant at any angle. This also indicates

that the optimum target angle would not have to be reprogrammed in the

satellite if the eccentricity changes due to drag, etc.

Figure 5-13 contains many more data points than the previous figure.

The additional data and apparent three-dimensionality helps reveal trends
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better. Shown clearly in the figure, the optimum star for observation

remains between 150 and 250 out of the orbit plane, regardless of the

eccentricity. Further, Figure 5-13 shows R.MS errors generally in-

creasing with eccentricity.

Having determined that the target star can be held constant

(9tat = 01 while varying the eccentricity, Figure 5-14 shows thetarget

steady-state components of the position error for 0 • e • 0.25. The

total position error decreases as e 4 0, indicating that none of the

variances in Eqs. (5-10) increase significantly. Simply put, the use of

the equinoctial elements allows the filter to perform equally well (with-

out retuning) over a wide range of values for e. The classical elements

could not be expected to exhibit such robustness due to singularities.

Driving the Inclination to Zero. As the orbital inclination

approaches zero, the longitude of the ascending node, 0, becomes

undefined. All other classical elements remain well-defined, so their

variances should not change significantly. Thus, only the terms a2
XX

2

and a 2 in Eqs. (5-10) appear to have the possibility of growing as

i 4 0.

As in the study of e * 0, it is helpful to plot RMS values of

the total error for various inclinations against a range of target star

angles. This is presented in Figure 5-15 with quadratic approximations

to the data. While the relative spacing changes somewhat over the range

of t , there is enough consistency at the low end for a fair com-target

parison between various orbital inclinations while holding the observa-

tion star constant at t - 00. A larger number of data points for
tar5et
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Figure 5-15. The Effect of the Observed Star on Orbits
of Various Inclinations

inclinations from 0.0750 to 900 is presented in Figure 5-16 to illus-

trate trends not easily represented in line graphs such Figure 5-15.

Once again, the optimum target angle lies near 200 for all inclinations.

The effect of varying the inclination between 0.0750 and 900 in the

baseline configuration is shown in Figure 5-17. Over ,this range the

filter rapidly converges to steady-state conditions. Note, however, the

filter underestimates its error outside the range 150 : i s 450,

implying the tuning is more sensitive to changes in inclination than it
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O was to changes in eccentricity. RMS values of the position error.,

aictual and predicted, grow as the inclination is reduced, tndicatl:r'In

,rovth in the uncertainty of one or more orbital elements.

Figure 5-18 depicts the situation at smaller inclinations. W

becomes smaller than 0.0750, the filter no longer converges Fo

steady-state conditions; rather, the errors continue to grow with

For illustrative purposes only, the values shown in this figure

simply one-month averaged errors. The in-track and cross-tracl G,v:-

ponentE of the error show the largest degree of divergence.

In zero-inclination situations, the mean longitude itself,

L = w + 11 + M, is well defined; however, when explicitly constrnc-,ed

fLom the individual components w, 0, and M, the mean longitude can

become somewhat uncertain. Since L directly relates to the in-track

position, the growth in in-track error can be explained by the uncer-

tainty involved ý constructing L. The cross-track motion is, on the

other hand, directly related to the uncertainty in the orbital inclizu'-

tion. The inclination is derived from ) and 0, the two elements

whose uncertainty can be expected to become large as i o 0. Thus, the

growth in cross-track error can be explained also.

The divergent situation when i 4 0 does not imply the change to

equinoctial elements was in vain. Indeed, simply retuning the filter

retrieves the convergence. Setting CQnCT diag (4.1 x 10
0- 13 -3 2 3 2-1

4.3 x 101, 4.1 x 10 km2 , 1.0 x 013 rad2 , 1.6 x l0 1 2 , 7.9 x 10-

by trial and error results in stoady-state actual and filter-computed
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Figure 5-18. The Effect of Driving the Inclination to Zero
(Without Retuning the Filter)

standard deviation values of approximately 1 km each, as shown in

Figure 5-19. The only element given more pseudonoise was that one

corresponding to the semimajor axis. This allowed the iteration scheme

in the U-D filter more latitude, with the result that this filter could,

indeed, converge for all inclinations.
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Summary of System Characteristics

A generic test orbit was investigated in this chapter to study the

behavior of the navigation system proposed. Individual parameters were

changed and the effect on system performance examined. The following is

a list of the major findings:

(1) The best practical configuration incorporates an observa-
tion at least every 1.68 minutes, employs instruments with a
composite precision of 0.010, and sights a star near 220 out
of the orbit plane. Such a configuration is capable of pre-
cisions comparable to the space sextant while making use of
only currently available, off-the-shelf hardware.

(2) The performance changes with eccentricity variations,
improving as e * 0. The optimum target angle is essentially
unchanged for all eccentricities and retuning with changing
eccentricities is not necessary.
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(3) Changes in inclination can affect the convergence and
care must be taken to retune the filter if the inclination
changes dramatically. With proper tuning, convergence is
possible at all inclinations. Position error increases as
i 4 0, reaching 1 km (after retuning) for the baseline
configuration.

The next chapter applies the filter to three practical orbits:

low-Earth, semisynchronous, and synchronous. Lessons lparned from

investigations in this chapter can be directly applied in these

situations.

5
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VI. Results of the Short-Term Estimation Problem

The studies in the previous chapter investigated only one contrived

"generic" orbit. While quite a few valuable results were produced, the

question of how this system performs when applied to more "useful"

orbits remains. This chapter addresses the question through Monte Carlo

studies of the system when applied to three particularly useful orbits:

low-Earth, semisynchronous, and synchronous.

Applied System Configuration

Excellent results were found in the last chapter when a "best prac-

tical configuration" was simulated by employing:

(1) An observation rate of 0.01 Hz

(2) a = 0.010

(3) An empirically determined optimum target angle

Monte Carlo studies require the entire estimated trajectory to be

stored for a large number of runs. Since the orbits in this chapter

were studied for long periods of time, a 0.01 Hz data rate proved

impractical. This is only due to on-line storage limitations of the

Elxsi minisupercomputer employed in the simulations. When implemented

onboard a spacecraft, very little storage is required. It was found

that output was manageable when the data rate was set to an observation

every 3.36 min (-0.005 Hz) and ten Monte Carlo simulations performed.

Increasing the number of simulations beyond ten produced little change
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in the observed statistics. The use of a 0.005 Hz data rate produces

conservative estimates of the system's capabilities and higher rates

could produce better results.

Low-Earth Orbit Results

In low-Earth orbit, satellites experience significant drag effects.

The proposed U.S. Space Station Freedom is an important example of a

low-altitude, high drag situation (15), so it was selected for study.

Table 6-1 lists the station parameters used in this research.

Table 6-1. Space Station Freedom Data

Initial Orbital
Elements: Classical Equinoctial

a -6785.58 km a -0
f

e=0 a =0

M- 100 (1) a - 6785.58 km

i 28' L 550
W 00 (1) X 0.1763

Q - 450 (1) 0 .1763

True Initial
Position Error: 10.4 km (la)

True Inital
Velocity Error: 10.4 km/week (la)

Coeff. of Drag: 2.22

Ballistic Coeff.: 49.9 kg/M2

Effective Mass: 219,600 kg
2

Effective Area: 1980 m2

Data Rate: 0.005 Hz

C : 0.010
comp

0 t 200 Out of orbit planetarget

(1) Val~ues arbitrary

(Adapted from Ref. 15)
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It was found the filter could be tuned with the pseudonoise
TC12 -12i-4 2

matrix GQC= diag 4.0 x 10 4.0 x 1012 4.1 x 10 km

1.0 x 1010 rad2 , 9.1 x 10-13, 2.5 x 10-13 to match the actual (true)

RMS error to the filter-computed value. Using results from the last

chapter as a starting point in a search, the optimum target star angle

was found to be 200 out of the orbit plane. Air drag necessitates a

reboost of the station every 90 days, so it was not necessary to inves-

tigate a longer period of time (15).

RMS error results are shown in Figure 6-1, and Figure 6-2 breaks
A A

the actual RMS error into orbit-averaged components (along e, e,
r

e ). Since the orbital period in this orbit is short and includes fewh

observation points (-27), the data was smoothed over five orbital peri-

ods instead of one (as in the last chapter) to clarity of the figures

for presentation. The mean steady-state actual (true) RMS error is 534

m, while the filter predicts its RNS error to be 554 m. As would be

expected when drag is significant, the in-track component of position

yields the largest errors.

Another, often unconsidered, aspect of low-Earth orbit is the

effect occasional large solar flares can have on the motion of a space-

craft. Particularly large flares can cause the density of the upper

atmosphere to rise to several times its normal value for several days

(25:19; 46). Figure 6-3 illustrates a good mathematical model for the

flare's effect on the density of Earth's upper atmosphere (31:125-129;

25:19; 46).
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Figure 6-3. Mathematical Approximation to a Solar Flare's Effect
on Density in Earth's Upper Atmosphere

A simulation of this navigation system operating during such flare

activity was investigated. Figure 6-4 presents the Monte Carlo results

with the density profile "seen" by the satellite plotted below for ref-

erence. Notice, the mean steady-state RMS crror shows no statistically

significant difference from the previous situation during the time of

interest. Thus, the position estimation is essentially oblivious to

even large "one-shot" perturbations.
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Semisynchronous Orbit Results

The Global Positioning System (GPS) is required for many proposed

navigation schemes, each relying on the semisynchronous GPS satellites,

which, in turn must know their own ephemerides (14:32,34-35; 22; 30:3-4).

Ground-based stations presently gather navigation data from each GPS

satellite, process it, and transmit updates back to the spacecraft. In

the event of ground station failures, the GPS system would begin to fail

within a week as the stored ephemerides onboard each satellite begin to

depart from reality (14:34; 17:4). As a backup for such a failure, each

GPS satellite could employ an autonomous navigation system of its own.
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In turn, a user of the GPS system might suffer some loss in precision,

but he would not lose use of the system altogether.

The GPS satellite simulated is detailcd in Table 6-2. The U-D

filter was initially tuned with the pseudonoise matrix
1{8.01i0- 80 i-163 2

CQCT -diag 8 x x , 3.7 x 10-3 km2,

4.0 x 1014 rad2 , 1.0 x 1011, 1.0 x 10-ll to produce conservative

behavior. Figure 6-5 presents what appears to be unacceptable perform-

ance. Recall, however, that the semisynchronous GPS orbits are resonant

with Earth's sectorial harmonics of order 2 and 4 (17:80). These, as

Table 6-2. Semisynchronous Satellite (GPS/NAVSTAR) Data

Initial Orbital
Elements: Classical Equinoctial

S a = 26,560.24 km a = 0
f

e-0 a -0

M 0, a - 26,560.24 km
i -55 0  L- 00

- 00 0.5206

True Initial
Position Error: 11.8 m (la)

True Initial
Velocity Error: 3.0 m/day (la)

Coeff of Drag: 2.0

Effective Mass: 2000 kg

Effective Area: 10 m2

Data Rate: 0.005 Hz
a :0.01 0

comp

6 t 120 Out of orbit planetarget
S(Orbital data adapted from 17:69.80)
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Figure 6-5. Monte Carlo Results for Semisynchronous Orbit

well as the third-body perturbations of the Sun and Moon, are not

modelled in Aksnes' theory and can be expected to affect the error in

position estimates significantly. Indeed, a plot of the power spectral

density for the variance in the radial component of error confirms the

contributions due to these unmodelled gravity perturbations.

Figure 6-6 reveals periodic contributions to the error occurring an

integer number of times per orbit. Since the orbital period is exactly

half the Earth's period of rotation, this trend can be associated in

part with the unmodelled sectorial harmonic terms of the Earth's gravity

field. At intervals of approximately one orbital period, unmodelled
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Figure 6-6. Power Spectral Density for Radial Variance

perturbations from the Sun (and, separately, the Moon) can be observed

in the plot. Finally, the figure reveals that the majority (72.5%) of

the "power" in this error component is due to random bias

(frequency - 0 orbits-I) (32:143, 183-184).

Removing the unmodelled effects from the truth model allows the

effects of adding them to the onboard dynamics to be approximated.

Since the onboard dynamics more closely approximate the "real world,"

the pseudonoise matrix can be reduced to CQCn - diag (8.0 x 10

8.0 x '.0"17, 3.7 x 10-6 km2, 4.0 x I0-15 rad2 , 1.0 x 10"1, 1.0 x 10"'}

and still produce quite conservative results as shown in Figure 6-7.
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Figure 6-7. Monte Carlo Results for Semisynchronous Orbit
(Matched Dynamics)

For reference, a power spectral density plot analogous to Figure 6-6 is

presented for this "matched dynamics" case in Figure 6-8.

These figures demonstrate that an onboard model incorporating

gravity terms dominant in this particular orbit could produce position

estimates precise to at least 500 m. The majority of the power in the

error is still random bias (69.8%), with the only other significant

contribution occurring twice per orbit (14.2%). The latter source is

associated with the modelling of the Earth's oblateness (J ) in the
2
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Figure 6-8. Power Spectral Density for Radial Variance
(Matched Dynamics)

onboard dynamics and could possibly be reduced with a better dynamics

model. Regardless, the precision obtained is sufficient to indicate the

usefulness of a system such as this to provide backup navigation infor-

mation to the GPS satellites.

Synchronous Orbit Results

Commercial satellites in synchronous orbits could greatly benefit

from an autonomous navigation system. The reductions in ground support

possible directly translate to cost savings for the user. For this

reason, the satellite in Table 6-3 was simulated and the Monte Carlo
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F Table 6-3. Synchronous Satellite Data

Initial Orbital
Elements: Classical Equinoctial

a 42,241.09 km a - 0
f

e-0 a -0
S

M - 100 a L /2,241.09 km

i =0 L =i00'

S- 400 X =0
500 0

True Initial
Position Error: 10.4 km (1c)

True Initial
Velocity Error: 10.4 km/week (la)

Coeff. of Drag: 2.0

Effective Mass: 2000 kg

Effective Area: 10 m2

Data Rate: 0.005 Hz
, " 0.010
comp

8 t 17.50 Out of orbit plane
target

results are presented in Figure 6-9. The filter was tuned with

CQ CT -diag 1.0 x lo14, 3.0 x l0 1, 3.7 x 10-1 km2 ,
nf

5.0 x 10" rad2 , 4.0 x 10-", 4.0 x 10-12} in this situation.

The large error spikes are due to poor star selection. Recall, the

last chapter made mention of a possible ambiguity in radial position

when the Earth, spacecraft, and target star are aligned (7 - 0 or

I - n) for extended periods. For synchronous orbits, the satellite may

"linger" in this arrangement for over an hour, allowing the error to

grow. Add to this possible simultaneous unmodelled perturbations of the
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Figure 6-9. Monte Carlo Results for Synchronous Orbit
With Poor Star Selection

Sun and Moon, and the position estimates can deteriorate rapidly. The

spike at t = 24 days demonstrates how quickly the error in the esti-

mate can grow in this situation.

Such error growth can be circumvented easily, however. By only

allowing the observation of stars at least 250 off the spacecraft-Earth

line (IcosIl S 0.9), this problem is avoided as shown in Figure 6-10.

The 120 days simulated represents the approximate time required for such

a spacecraft to drift 1.50 in longitude (-1100 km), creating the neces-

sity for an orbital correction (1:82).
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Figure 6-10. Monte Carlo Results for Synchronous Orbit
With Proper Choice of a Single Observed Star

The remaining large deviations in the plot are due primarily to the

unmodelled third-body effects. (a second source for these deviations

will be discussed shortly.) Since general perturbations solutions for

Sun and Moon effects are readily available, it was appropriate to sim-

ulate including these in the onboard dynamics by, once again, removing

them from "reality." Figure 6-11 shows that 5 km precision is easily

obtained once these terms are included, even without retuning the

filter. These results can be improved still farther.
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Figure 6-11. Monte Carlo Results for Synchronous Orbit
With Proper Choice of a Single Observed Star

(No 3rd-Body Effects)

An ambiguity in location, exacerbated by slowly changing measure-

ments, exists for all values of -f. A single angular measurement only

establishes the vehicle's position on the surface of an imaginary cone

whose apex is at the Earth (8:624-625). Advance knowledge of the space-

craft's approximate position and additional measurements resolve the

ambiguity involved. However, if the a priori position estimate is in

error and the incoming angular measurements almost identical, the calcu-

lated position can become virtually anywhere on the fictitious cone.

Therefore, a growth in the estimated position error can be expected when

6-15



the angular measurements are changing slowly (as they do in synchronous

orbits).

If, instead of always observing the visible star nearest

9 t = 17.50, the nearest two are alternately sighted, the positiontarget

can be estimated with more certainty. This added certainty allows the
T • 014 1- 13

filter to be retuned with CQC c diag 1.0 x 10 3.0 x ,
n f

3.7 x 10-3 km2, 5.0 x 10-l11 rad2 4.0 x 10-11, 4. 0 x 0-'2}. Retuning

the filter is, in effect, equivalent to changing the process noise in

the dynamics. Retuning the dynamics just because the measurements

change seems inconsistent at first glance, so this action deserves a

few words of justification.

The matrix CQ CT has, to this point, been viewed as a represen-
n

tation of uncertainty in the dynamics between two consecutive updates.

Perhaps a better interpretation is that the matrix represents uncer-

tainty between two updates that can detect (or observe) an error in the

states. If the error is unobservable, then the update algorithm does

not correct the state appropriately when iterating. Two consecutive

observations cannot, when - = constant, detect a position error until

it becomes quite large. Thus, the time between observations which can

observe position errors adequately are far apart, as reflected by a

large pseudonoise matrix. Viewing two stars alternately increases the

observability of state errors; hence, the pseudonoise matrix can be

smaller.

Results are shown in Figure 6-12 for the situation in which third-

body effects ire not modelled in the onboard dynamics. For complete-

ness, Figure 6-13 illustrates the performance when the inclusion of
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third-body terms in the onboard dynamics is simulated. The observation

of two stars again improves the precision of the estimates over one star

as can be seen by comparing Figures 6-11 and 6-13.

Alternating between the two "best" stars allows the position of a

synchronous satellite to be autonomously estimated to 5 km or less.

When one considers synchronous satellites can be allowed to drift hun-

dreds of kilometers between orbit-correction maneuvers, a 5 km error is

very acceptable. Therefore, this navigation scheme could be directly

applied to such spacecraft with little or no modification.

Conclusion

Results from this section show that the short-term estimation

problem (Where Am I?) can be adequately answered with the assumed sys-

tem configuration. Simple modifications allow the scheme to produce

improved performance when necessary. If unmodelled perturbations are

significant enough to degrade the performance to an unacceptable level,

then Aksnes' model can be improved upon or replaced. Finally, in high-

altitude orbits, it "pays" (in improved estimates) to observe more than

one star.
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VII. The Formulation of the Long-Term Estimation Problem

The ability to predict an orbiting body's future position is a

desirable goal for any orbit determination scheme, and autonomous navi-

gation systems are no exception (40:111-66). In the short-term estima-

tion problem, a satellite's position was propagated forward (predicted)

over the short periods of time between observations. If not for the

effects of drag, that same process could be used to predict far into the

future -- the long-term estimation problem. Unmodelled drag effects

cause errors in position to grow rapidly when propagating low-Earth tra-

jectories forward over relatively long times. This section derives a

process for modelling such effects.

Modifications to Aksnes' Theory to Include Drag Effects

The most observable effect of air drag is an acceleration in the

mean anomaly that is quadratic in time; therefore, it is appropriate to

modify the dynamics model to account for this effect (23:306; 44:78,95;

45). To a lesser degree, a corresponding linear decrease in the semi-

major axis can be observed and must also be included in the theory. An

analytical basis for these modifications can be derived.

Ignore, for the moment, the oblateness effects of the primary on

the orbit. Further, recall that, for simple two-body motion, the mean

anomaly is related to the mean motion by

M- n - constant (7-1)

0
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where the mean motion is defined as:

n -(7-2)
- a3

A is the gravitational parameter of the primary and a denotes the

semimajor axis of the orbit. Further, the mean motion is related to the

orbital period by:

p _ 27r (7-3)
n

While P is constant in the two-body problem without drag, it

decreases in an approximately linear manner (at least over times which

are short compared to the spacecraft's total lifetime) when drag is

significant (25:61-62, 71-73; 31:115-116, 118-119; 44:78, 95-97). Thus,

let the period be given by:

P - P + P At (7-4)
0 0

P is the nominal two-body period at epoch (t - t ) and At - t - t

represents the time since epoch. P is the rate of change of the
0

period at epoch due to the effects of drag (0 < 0). Incorporating

Eq. (7-3) and rearranging, this becomes:

n - 2ir(P + 0At) (7-5)
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PAt
Over small times, 0 4 1. Performing a binomial expansion:

0

n 24l 1 At] + order[ 0 At (7-6)

From Eq. (7-6), it is apparent that, while n is constant in the two-

body problem without drag, it is more appropriate to consider n rather

than n to be constant when drag exists. Thus, as a first-order

approximation, let:

T- - = constant (7-7)dt

Since P < 0, Eqs. (7-6) and (7-7) indicate that drag causes an0

increase (acceleration) in the mean anomaly as compared to the nominal

two-body motion. The above equation can be rewritten and integrated:

rt

JdA - JtA d,- J d, (7-8)
t t

0 0

Which reduces to:

A - n(t- to) + c (7-8)

For this equation to reduce to Eq. (7-1) in the special case of

constant mean motion (no drag), c must be equal to n. Substituting

for c in Eq. (7-9):
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nt -to) + n (7-10)

Rearranging and integrating once more:

dM- nfA(r-t) dr + Jn dr (7-11)

o t t
o 0

After factoring the constant n out of the first integral and per-

forming a change of variables, Eq. (7-11) becomes

f d- n-to d + Jn dý 
(7-12)

0

4 where t = 0 t If the "mean" mean motion is defined by

t by

n t -- t - n d (7-13)

0 J

then, Eq. (7-12) simplifies to

M(At) - M + n At + • At2  (7-14)

where M is the mean anomaly at an epoch time of t - t and0 
0

At - t - t has been reintroduced for notational convenience. Note
0

that Eq. (7-14) still satisfies Eq. (7-1) when n is constant.
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For simple two body motion, the mean anomaly is given by the

relation:

M(At) = M + n At
0

(1-15)

- M + n At
0

Comparing this to Eq. (7-14), the quadratic term is seen to be an esti-

mate for the effect of drag.

Recall, however, all oblateness effects of the primary were ignored

in the derivation of Eq. (7-14). In Aksnes' theory, terms due to these

effects can be lumped together such that

M(At) - M0 + n At + g~n At (7-16)0
where gm is an orbit-dependent constant (4:71). As an approximation

for the effects of drag, this equation is modified to reflect the quad-

ratic term in Eq. (7-14):

M(At) - M +n + nAt +gnAt + At (7-17)

This is equivalent to adding the term !!)t2 to the right-hand-side of

Eq. (2) in Reference 4 such that

0
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3 2
M =M + nt - _n 1 - 3 C 10(l - 6c2 + 13c"

5(5- 18c 2 + 5c')e2 + 16,7( I 6c 2 + 9cej

- 1 • 3 302 + 54
-15 30c + 35C t + t2 (7-18)

where

c - cosi (7-19a)

1 =r e 2 (7-19b)

0

J 2 a - e 2 ( 7 -1 9 c)

J
4

Y- -- (7-19d)
4 2

2

and a, e, and i are the semimajor axis, eccentricity, and inclina-

tion of the orbit, respectively. J2 and J are zonal harmonics of
2 4

the primary. A notationally useful way to rewrite Eq. (7-17) [or

Eq. (7-18)] is

0
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n 2
M(At) - M (At) + n At.

AK 2

where:

MA (At) = Mo + n (1 + g) At -•

The "AK" subscript denotes a value of the mean anomaly as predicted L:

Aksnes' theory. Numerical considerations cited in the last chapter

dictated the use of equinoctial elements; therefore, this equation

should be rewritten in terms of these elements.

Since drag effects on w and Q are limited to small periodic

oscillations (25:8,9-10), it is sufficient to assume Aksnes' equations

for these terms are exact:

S co(At) - W (At) - w + g nAt (7-22a;
AKo

Q(At) - 0 AK(At) - (0 + g(nAt (722))

g9 and g 0 are orbit-dependent constants, similar in form to

(4:71). Adding the sum ir - + 2 to both sides of Eq. (7-21)

and noting the mean longitude is given by L - x + M, transforms the

relation to

L(At) - L (At) + n At2  (7-23)
AK 2

where:
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L (At) = (Ma + a) + n (+ gM + g + g) At

AK o o

(7-24)

= L + n (I + g + g + g ) At

The quadratic acceleration in the mean longitude is intimately

linked to a corresponding effect on the semimajor axis. Differentiating

the definition of the mean motion as given in Eq. (7-2) produces a rela-

tionship between the two orbital elements:

n 3 -5/2
_- a a (7-25)

Since is assumed to be constant, it is appropriate to evaluate this

relation at the epoch time, t

n 3 -5/2 (7

- / a a (7-26)

In the above relation, it is not necessary to subscript the constant
2

to denote evaluation at epoch.

Aksnes' theory treats the semimajor axis as a constant, and a non-

zero value of a in Eq. (7-26) would indicate otherwise; therefore, it
0

is appropriate to modify his theory to reflect this fact. A Taylor

series expansion on the semimajor axis about the epoch time yields (to

first order):

a(At) = a + a At (7-27)
0 0
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Or, incorporating Eq. (7-26) and following the format from before, this

is written

4 512
a(At) = a K(At) - a 0 At (7-28)

where a has been expressed as a function of time to reiterate the

fact that this value is predicted, albeit as a constant, by Aksnes'

routines. This relation indicates the semimajor axis decreases linearly

with time in the presence of drag. King-Hele followed a completely

different approach and also concluded the semimajor axis is reduced in

this manner (25:40).

The self-consistency of the above derivation to this point can be

checked. The assumption of a linearly decreasing period, P = P 0+ P At,

was introduced in Eq. (7-4) and eventually lead to a linearly decreasing

semimajor axis, a - a + a At, as reflected in Eq. (7-28). To verify
0 0

the consistency of the derivation, it is only necessary to substitute

the resulting linear approximation for a back into the definition of the

period:

27r 3/2

(7-29)

21r 3/2[ [+( At3/2

7O9

7-9



a a= has been introduced as notational shorthand. Performing a
0 a0

binomial expansion and retaining the terms to first order, this becomes

P ? a3/ 1+5 3

n n a

II 0 ý

where it has been recognized that nt A aaTusne ()~ 0
0 a

0

Eq. (7-30) does indeed verify that the derived linear relationship for

the semimajor axis is consistent with a linearly decreasing period.

Further, by comparing Eq. (7-30) with Eq. (7-4), the following equiva-

ID lences result:

2: L (7-31a)
0 n

0

P -L (7-31b)
no (4o

Together, Eqs. (7-31) can be assembled to form:

~- 3 (1Ii (7- 32)

This is a well known relationship between the period and semimajor axis,

directly derivable from the definition of the period without making use
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of binomial expansions (31:117). This consistency with a known relation-

ship provides additional confidence in the derivation thus far. In

light of Eqs. (7-30) and (7-32), it is apparent the assumptions and

approximations are, at least to first order, self-consistent thus far.

Modifications to Aksnes' Theory to Improve the Epoch Estimates

In a perfect world, the modifications to Aksnes' theory shown in

Eqs. (7-23) and (7-28) would produce completely acceptable results when

propagating trajectories forward over long periods. This is an estima-

tion problem, however, and the epoch values L and a will, in general,
0 0

be in error. If the variation of Eq. (7-23) is taken at a specific

time, then:

6L(At) s 6L° + 6n (1 + gm + gw + go) At (7-33)

The constant (gM + g + go) is of order 1(471). In other words,

(gM + gu + go) is on the order of 10-4 and (I+gm+g,)+go) = 1 for

the purposes of this variation; therefore, the following equation

relates errors in the mean longitude at time t to errors at epoch:

SL(At) - 6L + 6n At (7-34)
0

6L is clearly the error in the estimate of L , while the term 6n
o a

requires a bit of manipulation to interpret its physical basis.
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The linear approximation for the mean motion can be introduced into

the definition of n

t- t

0

and a variation taken to yield:

n n tt+ n•d (7-36)

0

Thas is a fixed time problem, so the variational operator can be moved

inside the integral. Further, n is being considered to be a fixed

O constant. Thus, Eq. (7-36) becomes

1 t- t

6n i 6 nno d6
t-t° -

0

.0

0

7n d2

t -0

t-t 0 d (7-37)

0

-6n
o
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where it has been noted 6n is independent of time (indeed, 6n is a
o 0

parameter evaluated at a specific time, t ) and can, therefore, be
0

taken outside the integral for the integration.

Replacing 6n with 6n in Eq. (7-34) produces:
0

6L(At) - 6L + Sn At (7-38)
0 0

By taking a variation of the definition n and evaluating at
]a3

epoch, the linear term above, Sn , can be related to an error in a
0 0

6na - - 5/2 6a (7-39)

This represents the well-known linear effect on the mean anomaly (or,

equivalently, the mean longitude) produced by an error in a0 .

A similar variational argument applied to the semimajor axis

produces:

6a(At) - 6a (7-40)
0

Or, in light of Eq. (7-39):

6a(At) 2 a 2 52 Sn (7-41)
3 0 ° °

Putting together all of the corrections produces

0
7-13



L (At) - L (At) + SL + 6n At + ; At 2  (7-42)
RW AK 0 0 2

aRW (At) = a K(At) + r Sno + 2r (•) At (7-43)

where r - a 5/2 has been used as a shorthand notation. The
3 .-- " 0

subscript "RW" stands for "real world" because these relationships model

the actual dynamics much better than Aksnes' relations and are meant to

be a step closer to representing the "real world." Eqs. (7-42) and

(7-43) show that the true trajectory departs from that predicted by

Aksnes' theory; therefore, given proper values for the constants,

L Rw(At) and a Rw(At) would be better suited for propagating the

trajectory far into the future. This simply amounts to replacing

L AK(At) and a AK(At) with L w(At) and a Rw(At), respectively, in

Aksnes' equations of motion.

Determination and Application of the Correction Terms

It still remains to be shown how the constants 6L 6n , and
0' 0

are determined. Of these three, 2 is of primary concern since this

term embodies all of the principal effects of drag. As will be shown

shortly, the epoch correction terms (6L and 6n ) are easily ob-
0 0

tained in conjunction with the determination of 2n

A seemingly plausible, yet erroneous, approach is to include 2 as

an additional state variable and to estimate it along with the orbital

elements. This is undesirable from two aspects. First, increasing the

number of state variables causes a corresponding increase in the amount
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of time required for the filter to perform state updates and propaga-

tions. This extra computation time is difficult to justify at every

observation time since the drag parameter ; is only needed for an

occasional long-term prediction. Second, and more importantly, when

the time between observations is short, the effect of crag cannot be

separated from random errors in the measurements. In this situation,

the calculation of - is essentially meaningless. Both of these prob-

lems can be avoided; however, by using a two-step process.

During the short-term estimation problem ("Where am I?"), esti-

mates for all orbital elements are generated and can be stored at

various times. Then, after a sufficiently long time, these estimates

can be examined and the effects of drag ( and, equivalently, ao)

deduced. This is accomplished by rearranging Eqs. (7-42) and (7-43) as

AL = L (At ) L (At ) - 6L + 6n At + n 2 (7-44)
i RW i A 0t. (7- ) i

Aa aRW (Ati) a (At) r I 6n + 2r At (7-45)

where At - t - t (the time before epoch) and r is the previously
i i 0

defined quantity. The "RW" states are those found in the short-term

problem -- the "real world" values. The "AK" values are those "pre-

dicted" by propagating backwards from the epoch time using Aksnes'

theory. Figures 7-1 and 7-2 graphically illustrate the quantities ALi

and Aa with results from a typical Monte Carlo run. The quadratici

and linear trends of AL and Aa are quite clearly shown in these
i1 i
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figures by way of linear least squares (LLS) fits. Indeed, a LLS formu-

lation is an excellent method to determine the constants 6L , 6n,
0 0

and 2

A simple rewriting of Eqs. (7-44) and (7-45) allows the differ-

ences between actual and Dredicted values to be used as data for a LLS

routine:

6L
0

AL z - [I At At2] 6n 0-T X (7-46)

Si 2 i I1

n

Aa i-z 21[O F 2rAt] 6n 0 T21X (7-47)

Then, after a sufficient number of data points are collected, the

constants of the X vector are readily computed from:

rSL

X- 6n P T TQl 1 (7-48)
n i-lj=1

pTT Q- 1 T is the covariance of the estimated elements

X z ii ij iii
ij-

of X and the Q ij's are the corresponding (scalar) values of the variance
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for each datum, z (36:509-520; 44:56-59). A computer-style algo-
zij

rithm for applying this LLS method is shown in Figure 7-3. Because the

drag and epoch correction calculations are removed from the short-term

estimation problem, this can be termed a two-step process. The first

step is the real-time calculation of the orbital elements and the second

-TLS procedure to find the constants 6L 6n , and n from stored
o 2

data prior to predicting far into the future.
2 5/2

The term F 2 a involves an imperfect estimate, a
3 / 0 0

in fact, the LLS finds 6a (through 6n ) in an effort to correct this
0 0

value. This small error causes very little effect on the value of F;

never the less, a slight improvement in the calculation of the other

parameters in X can be realized by incorporating an optional calcula-

tion. This step is an initial refinement of a prior to performing the

LLS described in Eq. (7-48).

In addition to improving the estimate of F, refining the initial

estimate of a has a secondary benefit. If, in Eq. (7-44), the linear
0

term 6n At is large relative to other terms, the difference could
0

become AL = Sn At due to numerical truncation; i.e., all information
0

about the mean longitude error (8L)) and drag could be lost.

Since tnis term is proportional to the error in the semimajor axis at

epoch [through Eq. (7-39)], an initial correction would reduce the rela-

tive size of it when the main LLS calculation is performed. Thus, a

better initial estimate for a will clsu help minimize the chances of
0

losing information about 61, and due to numerical truncation.
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A preliminary correction term, 6a, can be calculated from the
0

data involving only the semimajor axis, Aa. . Then, the value for a1 0

(and, therefore, F) can be improved before solving for the entire

vector of constants, X. This is accomplished by noting that Eq. (7-45)

is really just a rewriting of

Aai a Rw(At ) - a (At) = 6a. + a At (7-49)

so a least squares solution can be wzitten as

Y- a Py T T Q-TlAa (7-50)

i•'l

where:

PY T Q1 (7-51a)

T - [ At]J (7-51b)

The resulting correction term, 6a , can then be used to improve the
0

estimate of the semimajor axis at epoch. Evaluating Eq. (7-49) at epoch

and rearranging allows this correction to be applied:

aRw(O) - a (0) + 6a (7-52)
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Or, letting a (0) be the initial estimate of a 0 this can beSaK(0

rewritten

a(O+) - a(O-) + 6a (7-5>
0

where the minus and plus superscripts represent conditions before and

after correction, respectively. The relevant portion of the uwo-step

algorithm, modified to include this step, is shown in Figure 7-4.

A few words of warning about the Qj 's are needed here. A quite

attractive approach to incorporating these would be to combine the

appropriate elements from the covariance matrix in the filter and from

a covariance matrix propagated back from epoch using Aksnes' theory.

Recall, when two scalars x and y, with associated uncertainties a
x

and a are subtracted, the uncertainty of their difference is the

simply:

a - a + a (7-54)
x-y x y

The differences formed in Eqs. (7-44) arid (7-45) are, similarly scalars,

and the corresponding uncertainties are the square roots of the appro-

priate elements from the covariance matrices. Thus:

Q - a 2 { QLL) (QLL] (7-55)
ii AL i Il RW+ AK

21 a, , a IRW+ Qa IA

7-21
{ aa]nu m jnn m mN Q u muan una]nnnmm nm n



DO WE

SPREDICT FAR N

-INTO THE

SYES

FIND INITIAL
CORRECTION TO Eq.

a (7-50)

CORRECT a Eq.
0 7- 5 3

PERFORM LLS
TO OBTAIN Eq.
6, 6n (7-48)

0

Eqs.

MODIFY EQUATIONS (7-',2)

OF MOTION (7-4..)

LPREDICT

Figure 7-4. Lower Portion of Two-Step Algorithm With
Optional Correction Step Shown

7-22



This approach should be used with extreme caution, however, as it was

found this tended to overweight the points closest to the epoch. The

resulting value of ; overpredicted the effect of drag. Recall from

Chapter IV that the state transition matrix used to propagate the covar-

iance [Eqs. (4-30), (4-36), (4-37)] was found numerically. Errors in

such a calculation can become larger as the time of propagation grows,

causing (QL L)A and (Qaa.J to become unrealistically large.

This situation was avoided by arbitrarily weighting all data equally

(Q - I) with excellent results.
1 j

Summary

During the course of the long-term estimation problem, the naviga-

tion system produces state estimates at every data point, a portion of

which can be stored. Then, at a later time, general trends in stored

values of thie mean longitude and semimajor axis can be examined. This

yields information not only about drag effects, but also about errors in

the current (epoch) state. Together, this knowledge allows the state to

be predicted forward over long periods of time. Figures 7-3 and 7-4

summarize this two-step process. A detailed application of this method

is presented in the next section.

0
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S
VIII. Results of the Long-Term Estimation Problem

The two-step process derived in the previous section has been

applied to the proposed space station Freedom. The same parameters as

in the short-term estimation problem were assumed and are repeated in

Table 8-1 for reference. In this chapter, results for "routine" predic-

tions as well as some worst-case scenarios involving the effects of

solar flares are presented. Where applicable, methods for minimizing

the impact of flares on the predictor performance are presented.

Routine Predictions

Routine predictions are those that take place when a "typical"

Earth atmosphere is present. In terms of the "real world" as assumed

by the truth model, this means that the spacecraft is subjected to an

oblate, rotating, exponential atmosphere. In other words, the atmo-

sphere departs little from the average during the time of interest and

unusually large disturbances (solar flare effects, etc.) are far apart.

The first scenario explored was one in which Freedom computed its

current position for eight days and then predicted its future position

from that point forward, without the aid of additional data. Thirty-

five points spread over seven days were used in the two-step algorithm

to estimate 6L 6n , and -0j 0 2"

Figure 8-1 very graphically illustrates the superiority of the two

step process. Applying uncorrected Aksnes' equations directly produced

an RMS error of 1100 km at the end of 12 days. This was reduced an order

8
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0
Table 8-1. Space Station Freedom Data

Initial Orbital
Elements: Classical Equinoctial

a- 6785.58 km a = 0
f

e-0 a -0

M 10 0 (1) a -6785.58 km

i =28' L =55'

w 00 (1) X =0.1763
S- 450 (1) 4 = 0.1763

True Initial
Position Error: 10.4 km (la)

True Inital
Velocity Error: 10.4 km/week (la)

Coeff. of Drag: 2.22

Ballistic Coeff.: 49.9 kg/m2

Effective Mass: 219,600 kg

Effective Area: 1980 m2

Data Rate: 0.005 Hz

a .
0.010

comp

Stae 200 Out of orbit plane
target

Tuning Matrix:

CQ C - diag {4.0 x 10-12, 4.0 x 10-12

4.1 x 10 km2, 1.0 x 10-1 rad2

9.1 X 10-13 2.5 x 10- 131.

(1) Values arbitrary
(Adapted from Ref. 15)

0
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Figure 8-1. Comparison of Prediction Methods

of magnitude by including the drag correction term in the equations

of motion [Eqs. (7-23) and (7-28)] as the second curve in the figure

shows. The best results, however, were produced by including not only

Sbut also the epoch correction terms 6L and 6n [Eqs. (7-42) and
0 o

(7-43). This method allows better precision for longer prediction

times. Ground-based orbit determination facilities routinely produce

estimates to around 12 kcm -- Figure 8-2 shows that this system can

easily predict two weeks into the future -ith that precision (42:63).
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Figure 8-3 plots the individual components of RMS error, revealing

that the quadratic growth in total RMS error seen in the previous figure

is the result of quadratic growth in. the in-track position error. The

n-track component of error grows, in part, due to the inability to cal-

culate A exactly. The number of points used in the calculation of this
2

term could be increased, but was deemed unnecessary from two aspects.

First, additional points require additional storage and computa-

tions. When resources are limited, it is best to limit the number of

data points stored and processed to a minimum. Second, and more impor-

tantly, there is no real advantage gained in finding a better value --
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is only an approximation to the effects of drag. The precision will

always be limited by the assumption that all drag effects can be lumped

into this single constant. Further, by holding • constant during the

prediction process, the implicit assumption is made that drag effects

will remain, on the average, the same. The atmosphere is dynamic enough

that there is no reason to believe that even a perfect calculation of

this value at epoch will remain any more valid than an imperfect esti-

mate when predicting over long times. Indeed, Monte Carlo simulations

verified no significant improvements were gained by doubling the data

and/or data time span. Therefore, for the purposes of this research,

8-5



thirty-five points spread over a week was deemed compliely adequate for

the two-step algorithm.

The drag parameter was found to be quite observable for this

situation. Monte Carlo results produced very similar results between

n
individual runs with the value of f always lying in the range

2.37 x 10-13 < n < 2.39 x 10-13 rad/sec2 with a mean of

2.38 x 10 + 4 x 10 rad/sec (la). The consistency and small

standard deviation in these values is further confirmation that the

value is quite easily observed after a week with as few as thirty-five

points.

An analytic approximation to A can be calculated to compare with
2

that produced by the Monte Carlo simulations. Differentiating the defi-

nition of the mean motion yields:

n 3n- 3
3n 4(8-1)

It can be readily shown for circular orbits that

a-- F (8-2)
n v

where F is the perturbing acceleration tangent to the orbit (7:399;V

8:488). Assuming drag is the only perturbing acceleration, this can be

rewritten as:

S2
a - -a (8-3)

n drag

0
8-6



* The acceleration due to drag for a circular orbit about a planet with a

rotating atmosphere is given by

GA
1 D 2

a C--- A Vp v (8-4)
drag 2 M b

where the speed of the spacecraft relative to the rotating atmosphere is

V _ /(v + yW) 2 + (v - xo) 2 + v 2  (8-5)
b y z

and w is the rotation rate of the planet; C is the drag coefficientD

of the spacecraft; A is the effective spacecraft area; M is the

mass, and p is the atmospheric density (7:423-424; 28:3-4). v , v ,
x y

and v are the x, y, and z components of the inertial circular
z

velocity, respectively. Combining Eqs. (8-1), (8-3), and (8-4) produces

a simple equation for the drag correction term:

C An 3 CDAP 2(86

2 4a M p vb (8-6)

2

Over an orbit, the value of v2 changes as reflected in Eq. (8-5).b

n 2
But is assumed to be constant at any point in the orbit, so v

2

should be replaced by its orbit-averaged mean value, v2, in Eq (8-6).

This substitution, in effect, is equivalent to averaging both sides of

the equation over an orbital period.
2

vb is found by first transforming Eq. (8-5) to its equivalent form

in terms of the appropriate equinoctial elements. Assuming all of the

elements given in Table 8-1 are approximately constant (slow variables)
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except for the mean longitude L, the cartesian position and velocity at

any point in this orbit can be represented by

X 0.9415cosL 
+ 0.0585 sinL

r 0.0585 cosL + 0.9415 sinL a (8-7a)

-0.3320 cosL + 0.3320 sinL

[ ~ 0.0585 cosL - 0.9415 sinL

0.3320 cosL + 0.3320 sinL[ V] [ .30cs .30sn 0.9415 cosL - 0.0585 sinL v (8-7b)

where v - ] ' is the inertial circular speed (27:51,73-75). [Note,

liberal use of zero eccentricity was employed in obtaining Eqs. (8-7).

See Appendix D for details.] Substituting the relations above into v2
b

and manipulating the algebra produces:

S
v v 1.7/66 vwa + w a 0.8897 + 0.2204 sinLcosL (8-8)

b c c

To average the square of the relative speed over an orbit, the

integral

2 1
v -- dL (8-Q)

0

is computed as

2 2 2 2

v v 1.766 vwa + 0.8897 w a (8-10)
b c c
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where it has been further assumed that v is constant for the pur-
c

poses of integration. If drag is ignored in approximating the circular

speed, then v = . Recalling p = 3.9860045 x 105 km3/sec2 and
C a

S7.29212 x 10.5 rad/sec for the Earth (Table A-3) and

a = 6785.58 km (Table 8-1), then v z 7.664 km/sec. Eq. (8-10) can

2 2 2be evaluated to yield v b 52.28 km /sec.b

References cite a wide range of values for the atmospheric densi-

ties at the altitude of interest. Values as low as 1.1 x 10- kg/km

are given for the nighttime atmosphere during periods of low solar

activity and as high as 1.3 x 10 kg/km for the daytime atmosphere

during periods of exceptionally high solar activity (6:221; 26:2-10,

2-11,2-14,2-15; 28:A-4; 37:280; 47:161). Since low-altitude satellites

quickly circle the Earth, it is reasonable to assume the orbit-averaged

* density seen by the satellite will be somewhere between the night and

day values. Further, for the purposes of this study, it is appropriate

to assume an average solar activity level; therefore a density of

p = 2.0 x 10-3 kg/km3 is representative of typical conditions at the

station's nominal altitude (37:280).

In light of the values above and those in Table 8-1, Eq. (8-6) can

be evaluated to produce an analytic approximation for the drag para-
S10-132

meter, - 2.31 x 10 rad/sec . This value is slightly less than

that found in the Monte Carlo study, but well within the accuracy of

the approximation. The consistency between the analytic and Monte

Carlo values is further corroboration that drag effects are observable

when a two-step systen is employed.
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Predictions Across A Solar Flare-Induced Atmospheric Disturbance

Implicit in the assumption that - remains constant is the belief

that atmospheric density remains essentially constant over the period

3f jerediction. A particularly large solar disturbance can invalidate

this assumption for a period of time. A "worst case" arrangement would

be for a flare to occur after a spacecraft computes ; and predicts its

future position. Because the calculated value becomes invalid, it will

underestimate atmospheric drag effects for the duration of the flare's

effects on Earth.

Suppose at day seven the satellite wants to predict it2 position at

a later time. Figure 8-4 shows the actual RMS error in this prediction

if a solar flare's effects are encountered at day 10.5. For reference,

the timing of the solar flare has been plotted below. RMS error values

for the equivalent prediction when no flare is encountered are shown with

dashed lines for comparison. The atmospheric perturbation causes more

than an order of magnitude degradation in precision. While not excel-

lent, predicting positions to 400 km 23 days in advance is still within

acceptable limits for many applications.

Since there is no autonomous way for a spacecraft to know when

there will be a large disturbance and how long it will last, no appar-

ent solution exists for this scenario. It is possible, however, for

the vehicle to determine that such a disturbance has occurred or is

occurring. Simply put, the spacecraft can detect such an occurrence

when its present position begins to depart from that previously pre-

dicted by an unusually large amount; i.e., residual monitoring, etc.
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Once such a determination is made, the spacecraft "suspects" all of its

previous predictions beyond the present time to be in error and can

take corrective action.

Predictions After A Solar Flare Induced Atmospheric Disturbance

In the last section, the calculation of the drag parameter, 2'

incorporated data before the disturbance (1 _5 t : 7 days) and,

therefore, underestimated drag effects during the disturbance

(10.5 5 t :5 13 days). The other "worst case" scenario is that an

8
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undetected disturbance occurs during the time just before prediction

begins. In this situation, the calculation of - includes data across

the disturbance and the value will overestimate future drag effects.

Figure 8-5 shows the Monte Carlo results. At day 14, the space-

craft predicts its future position. Sixteen days later the predicted

position is 800 km in error (lo). Assuming that the spacecraft has, either

autonomously or by human intervention, determined the approximate time

span over which the disturbance has occurred, stored data can be

manipulated to yield significantly better prediction performance.

- e 'hen -ire *s Pre - t

-- - = -; C,, -•JS r,: ýv ,• e n ýýO ý:Iore C uS •

//

" 7

15 20

-. e (Days)
Figure 8-5. Predictions After a So1I•l Flare
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Atmospheric density returns to approximately its nominal value a

few days after the disturbance occurs. Further, the spacecraft's semi-

major axis will, typically, be reduced only slightly during the dis-

turbance and drag effects experienced afterwards will be comparable to

those before. Indeed, in an exponential atmosphere, the density near a

reference altitude h can be approximated as
0

-- = e (8-11)P

where H = 383 km is the scale height for this orbit (28:3-4, A-4).

So, the density ratio between two altitudes, before and after the

disturbance, can be written:

p h hJ--2 (8-12)
Pi

It has been assumed in Eq. (8-12) that p p ; i.e., the density at

1 2

the reference altitulde has returned to its preflare value. Eq. (8-12)

can be solved to show that a 10% increase in density requires a 36.5 km

reduction in the orbit altitude. Therefore, the assumption that drag

effects after a disturbance approximate those before is valid even if

the semimajor axis decreases by 30 - 40 km during the event.

The calculation of A from "preflare" data is a straightforward
2

application of methods described in the previous chapter with one

exception: the epoch time in the equations is not the present time
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(t = 14 days); rather, it is the last time before the flare for which

the spacecraft has a stored state estimate. Note, then, the resulting

epoch corrections, SL and Sn are corrections to
preflare preflare

the preflare epoch and not to the present state. Because of tne

unmodelled disturbance between this epoch time and the present, this

data contains virtually no information that the onboard system can

employ to correct its current state estimate.

"Post-flare" data, conversely, can be used to update the current

state. Repeating the LLS calculations with data stored from the flare

until the present (13 : t • 14 days) generates 6L , Sn , and an
0 0

additional estimate for 2" The latter value is discarded. Figure 8-6

graphically summarizes the manner in which data is divided for these

calculations as well as the constants retained from each time "slice."0

oo c Tines With Stored Doit
__ iare Prof ie

Preflcre Dotc

2
6>.:

(jn

J.fCfffh~llll~llllllfffffffffffffffff~l 00FDO0OO00OC00 00C COOI I

3 4 6 7 8 9 to ' 12 3

Time (Days)

Figure 8-6. The Division of Data to Minimize a Flare's
Effect on Prediction Precision
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Before presenting results, a few words about the decision to

discard the value of - calculated from post-flare data are in order.

The sequence of events studied allowed for only- one day of post-flare

data to be accumulated before predicting (on day 14). Since drag

effects cannot be adequately measured over short times, the previous

estimate found with seven days of preflare data will, in general, be

the better estimate. As the time between the disturbance and predic-

-ion point grows, the post-flare value begins to become more and more

certain and the filter can eventually switch back to performing only

one LLS operation (as if the flare never occurred).

Figure 8-7 presents the Monte Carlo results obtained for the situ-

ation at hand. The RMS error after predicting 16 days has been reduced to

about 27 km. Further, the error growth is linear. As Figure 8-8

shows, this is primarily due to a linear growth in the in-track com-

ponent. This indicates the dominant source of error is due to an error

in the epoch (t = 14 days) estimate of the semimajor axis and not to

an inappropriate choice for ;

The figures illustrate much of the accuracy in predictions fol-

lowing a flare can be recovered by breaking the data apart as described.

Refining epoch estimates by including more post-flare data would improve

prediction capabilities even further. This could be accomplished by

increasing the data rate following a solar event or by simply waiting

for a longer period of time before attempting to predict future predic-

tions.
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Conclusion

This study of predictions in low-Earth orbit Ids produced very

promising results. Even when applied to a situation where drag is

unusually large, predicti~h capabiliLirc rivdi iiiu.e uf glurnd-bas.-d

facilities under normal operating conditions: 9 - 10 km after two

weeks. When solar activity causes unusually large changes in atmo-

spheric density, the method must be modified to some degree, but pro-

duces acceptable results, never the less.
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IX. Conclusions and Recommendations for Future Study

A truly autonomous navigation system for Earth satellites has been

derived and investigated. In addition to estimating a vehicle's current

position, the two-step algorithm introduced allows future positions to

be predicted accurately even in low-Earth orbit. Major results from

this study are summarized below.

System Characteristics

The navigation scheme presented was comprised of existing hardware:

an 8088-type microcomputer, star sensors, and Earth sensors. Software

included an iterated, extended U-D estimator and a modified form of

Aksnes' first-order orbit theory. When applied to an intermediate test

orbit, the system was found to exhibit the following characteristics:

1. Subkilometer precision even when observations were as
far apart as 100 minutes, allowing a great latitude for
time-sharing of the processor with other onboard func-
tions.

2. Subkilometer precision for composite instrument
precisions equal to or better than 0.030, well within
current technology limits.

3. Relative insensitivity to instrument bias.

4. Great dependence on star selection for best results.
Stars near 220 produced much smaller steady-state posi-
tion errors.

5. Robust operation. The estimator could be applied to
all eccentricities considered and most inclinations with-
out retuning. With proper retuning (when necessary),

convergence to steady-state operation was obtained for
all inclinations.
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Short-Term Estimation Results

The short-term estimation problem was investigated for several use-

ful orbit classes. For low-Earth orbits, subkilometer precision was

obtained using the system as derived. To obtain the same precision in

semisynchronous orbit, however, modifications to the dynamics model to

include third-body perturbations and several sectorial harmonics of the

Earth had to be simulated. These modifications are minor and theories

exist for them. Synchronous orbits require a little extra care in star

selection, but position estimates of less than five kilometers are

obtained easily.

Long-Term Estimation Results

Results for Freedom's proposed orbit indicate the two-step method

derived greatly enhances the ability to predict future positions in low-0
Earth orbit -- accuracies rivaling those of ground-based facilities were

obtained. Under "normal" conditions, positions could be predicted to

ten kilometers two weeks in advance.

Solar flares were shown to degrade the performance when undetected.

Once detected, however, appropriate action can be taken, such as dis-

carding predictions across the flare and modifying the calculation of

drag effect for use in predictions following the flare. Such a modifi-

cation resulted in predictions only five kilometers worse than the

comparable "no-flare" predictions.

Recommendations for Future Study

With respect to this research, several areas deserve further study.

These are briefly summarized in the remaining paragraphs.

0
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1. Different onboard dynamics mirc.½1s need to be investi-

gated. Certain orbits, semisynchronous in particular,

require sectorial harmonic terms of the Earth to be model-

led onboard for best results. Further, third-body effects

of the Sun and Moon should be included for high-altitude

orbits. Both general perturbations and numerical integra-

tion methods exist for these effects. While this study

favored perturbations methods, further study may show

numerical integration to be a viable alternative.

2. The system should be applied to real data and the

estimates compared to the equivalent batch, nonlinear

least squares results, an accepted standard for compar-

ison in orbit determination (11:3). While the truth

model employed in this simulation was quite accurate,

success with real data will convince even the most ardent

skeptic.

3. Since many satellites already incorporate the neces-

sary hardware, this scheme could be employed as simply as

a software upload (core memory permitting). As a first

step, the spacecraft could simply downlink its state

estimates for comparison to ground-based calculations.

This should be actively pursued as a definitive and final

proof of concept.
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Appendix A: Assumed Constants in This Research

Table A-I. Earth's Spherical Harmonic Field

C S
n m nm nm

2 0 -0.10826270 x 10-2 0.00000000 x 100

2 1 0.00000000 x 100 0.00000000 x 100

2 2 0.15362188 x I0- 5  -0.88149101 x 10.6

3 0 0.25364140 x 10-5 0.00000000 x 100

3 1 0.21577626 x 10-5  0.24126717 x 10-6

3 2 0.26584006 x 10-6 -0.25794649 x 10-6

3 3 0.68342574 x 10-7 0.21311125 x 10.6

4 0 0.16233497 x 10° 0.00000000 x 100

4 1 -0.49092463 x 10iB -0.45669614 x 10-6

4 2 0.76688187 x 10-7 0.15020563 x id6

4 3 0.62092126 x 10'7 -0.71253554 x 10-8

4 4 -0.22210654 x 10.8 0.75347615 x 10-

5 0 0.22608567 x 10-6 0.00000000 x 100

5 1 -0.45957673 x 10'7 -0.68484786 x 10-7

5 2 0.96888828 x 10'7 -0.64588236 x 10'7

5 3 -0.19301654 x 10'7 -0.53971560 x 10-8

5 4 -0.90188441 x 10.9 -0.35344245 x 10-9

5 5 0.34362977 a 10O9 -0.21382311 x 10-8

6 0 -0.54248781 x 10-6 0.00000000 x 100

6 1 -0.56779905 x 10-7 0.13970346 x 10-7

6 2 0.30690303 x 10.8 -0.50574933 x 10'7

6 3 0.91517316 x 10-10 0.60242316 x 10.9

6 4 -0.37866087 x 10O9  -0.11468848 x 10.8

6 5 -0.10898613 x 10.9 -0.49201945 x 10.9

6 6 -0.67880983 x 10-11 -0.61336581 x 10- 10

(Adapted from 6:179; 19:Table 18; 28)
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Table A-2. Onboard Star Catalog

Star Name e (Geocentric-Equitorial System)
$A

1 Ursa Minor -0.19996 e - 0.18443 e + 0.96229 e
y z

A A A

2 a Andromeda +0.87404 e + 0.02913 e + 0.48497 e
x y z

3 a Piscus Anst +0.83586 e - 0.23637 e - 0.49545 e
x y z

A A

4 a Taurus +0.34720 e + 0.89385 e + 0.28369 e
x y z

5 a Carina -0.06239 e + 0.60294 e - 0.79534 e
X y z

A A

6 a Gemini -0.33732 e + 0.77887 e + 0.52875 e
x y z

7 Canis Major A A A
Cairs) M-0.18485 e + 0.93984 e - 0.28728 e

(Sirus) -xyz

A A A

8 a Leo -0.86275 e + 0.46061 e + 0.20857 e
X y z

A A

9 a Virgo -0.91550 e - 0.35341 e - 0.19228 e
X y z

A A A

10 a Bootes -0.78497 e - 0.52445 e + 0.32982 e
x y z

A A A11 a Scorpios -0.34814 e - 0.82528 e - 0.44465 e
(Antares) x y z

12 aLy A A

(Vgyra +0.12345 e - 0.76983 e + 0.62619 e
(Vega) x y

13 a Grus +0.60085 e - 0.32179 e - 0.73173 e
X y z

A A A

14 a Crux -0.45082 e - 0.05094 e - 0.89116 e
x y z

(Adapted from 41:H1-H31)
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* Table A-3. Various Other Parameters

Products of gravitational constant and body mass:

A Earth - 3.9860045 x 105 km 3/sec2

ASun = 1.3271244 x 1011 km 3/sec2

AMoon - 4.9027900 x 103 km 3/sec2

Radius of Earth: r - 6378.14 km
Earth

Rotation Rate of Earth: w - 4.178074216 x 103 deg/sec

Ellipticity of Earth: E - 8.182 x 102

(From Ref. 28)

0
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APPENDIX B: PROGRAM LISTING

The source code for the iterated, extended U-D filter employed in

this research begins on the next page. The version listed contains many

extra calculations and print statements which have been "commented out."

Such statements were used in debugging the code and have been left in

for future reference. Comments in the code should be sufficient for the

interested reader to follow the logic.

0

0
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program udfil58

c

"c This uses a two step process to get 3 constants. First the
"c epoch semimajor axis is corrected using delta a and then all
"c data is used to get the 3 constants.
C
"c This version finds 3 independent correction terms for
"c use in the prediction section. The mean longitude correction
"c is generated by assuming an error of the form: at^2 + bt + c,
"c where a is the ndot over 2 correction for drag, b is the linear
"c correction due to an error in the estimated semimajor axis at
"c epoch and c is the correction to mean longitude at epoch. The
"c semimajor axis error is assumed to be of the form: dt + e, where
"c d is the linear decrease in the semimajor axis due to the
"c effect of drag and e is the correction to the semimajor axis
"c at epoch. Note that there are only three independent constants
"c here because: a=a(d) and b=b(e).
C

c The calculation of a (and d) is based on 34 stored values, spread
c over the last week and the current state estimate. Thus, data is
c 35 delta semimajor axis values and 35 delta mean longitude values.
c
c This version predicts into the future after the data in the input
c file runs out. Consequently, an extra input variable is required
c -- endtime. endtime tells the program what time to predict until.Oc
"c This version allows points to *not* converge. The maximum number of
"c "bomb points" is set by assuming they all occur one after another
"c and we only allow this to continue for 1/4 the orbital period or
"c ten points, whichever is longer. Note that this will be a wasted
"c effort if the solution is truely diverging from the correct state
"c We would get maxbomb failures one after another; however, if the
"c nonconvergence is due to the iterations oscillating about the true
"c state, then this method has hope.
c
c When the filter fails, a file is written to indicate that fact.
c
c INPUT from local directory and default input
c OUTPUT to /tmp2/khicks directory
c
"o U(-) and D(-) are read in in terms of the refel. The data-
"c generating program performs the change from the known P(-)
"c in terms of randy to U(-) and D(-) in terms of reference elements.
"o Further, xhat (initial elements) is read in directly .... this is
"c yet another function of the data-generating program.
c
"c This program numbers the output files with the case # it reads
"c from the first line of the input file.
c
c The P(-)'s ire only calculated for refel.. .the lines computing
c P(-) for randy and rvh systems have been cominented out.Oc
c To save disk space, the only time information sent to
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"c the output files is deltat. Futher, all output except
"c randv information isn't printed.
"c Output information about the filter performance is reduced to
"c only information essential to the study of the filter performance.
"c (Many of the other calculations/outputs are still in the program, but
"c have been commented out.)
C

C

c Let's define some of the more important variables:
c
c u, d, pminus -- the UD factors of pminus (the covariance
c before incorporting a data point) in terms
c of the equinoctal orbital elements.
C

c uplus, dplus, pplus -- ditto above, but after updacing.
c
c xhat -- the current state.. .both before and after update.
c 1 -- a sub f
c 2 -- a sub g
c 3 -- semimajor axis
c 4 -- mean longitude
c 5 -- chi
c 6-- psi
c (as defined on page 68 of Aeronutronic Publication
c No. U-4180).
C

c randy -1- -3 are ::, y, z and 4-6 are xdot, ydot, zdot --
c position and ielocity corresponding to xhat (or xref).
C

c xref -- state vector about which we linearize. After
c the update iteration scheme, it is a carbon copy
c of the updated state.
c
c deltax -- differential correction to state in the state
c update iteration scheme.
c
c xnew -- state vector used to hold a new estimate in the
c iteration scheme.
c
c caph -- linearized observation matrix "capital H" in terms
c of the state variables. It is partial(obs)/partial(xhat).
c
c h -- expected observation based on current elements.
c
c capr -- rotation matrix "capital R" between state and randv
c coordinate system. R-partial(randv)/partial(elements).
C

c prandv -- covariance in terms of randy.
C

c rmag, vmag, hmag -- magnitude of radial, in-track, and
c cross track vectors.
C

c prvh -- covariance for above variables.
c
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c oldxhat, oldpplus -- stored states and covariances
c to be used in getting drag factors.
C

c mldiff, mlsig2 -- differences in actual mean longitude
c and predicted w/ corresponding variances
C

c adiff,asig2 -- ditto above for semimajor axis
C
c time -- the times (relative) that the above data was
c recorded.
c
c t -- absolute time from beginning of data taking.
c
c deltat -- time between observations.
C
c endtime -- the time to which to predict if we run out
c of incoming data. Set to zero if no prediction
c desired.
C
c tlast -- absolute time of the last point stoted in
c oldxhat.
C

c reftime -- last time with data; the point from which
c prediction occurs.
C
c dt, dt2, dt3, dt4 -- various powers of time used here
c and there.
c
c stemp, stemp2, stmpt2 -- scalar temp variables.
C

c vtemp -- temp vector.
C
c mtemp -- temp matrix.
c
c rdoto2 -- the "constant" used to account for drag as calculated
c from the delta a data -- this is just an interesting
c variable I watched -- not used for anything.
c
c coeff -- constants used in fitting the errors in state
c to account for drag. Elements are: Delta mean longitude
c (L) (or, equivalently, mean anomaly (M)) at epoch, delta
c mean motion (n) at epoch, and n dot over 2. This array is
c also used in the semimajor axis correction step (an optional
c step as described in the text.)
C

c pcceff -- covariance corresponding to coeff.
C

c suml, sum2 -- used in estimating coeff.
C

c eradius -- Earth's radius in distance units.
C

c eterms -- CM (DU**3/TU**2), J2, J3, J4, J5 for the Earth.0C
c star - unit vector to current star in geocentric-
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c equatorial coordinate system.
C

c starvec -- the catalog of star v.'zctors.
C

c indx -- used by two subroutines to pass information back
C and forth.
C

c repeat -- logical variable that tells us when to continue
c iterating.
C
c filename, case, digit -- the makings of the output file names.
C

c n -- order of the state.
c
c numit -- iteration number.
c
c maxit -- maximum number of iterations.
C

c ibombed -- # of times convergence failed.
c
c istoted -- # of points stored in oldxhat.
c
c istar -- star number of current observation.
c
c ibetween -- number of data points between storing values
c in oldxhat.O c
c The following correspond to terms used in the update and
c propagation section. Page numbers correspond to those in
c Maybeck, Volume 1:
c a -- the scalar a in kalman update (p 393).
c z -- the observation (scalar).
c q -- covariance (scalar) of the observation.

c qn, cn -- factored propagation noise matrix in terms of state
c variables (equinoctal elements). These are Gd and Qd
c in Maybeck.)
c avec -- the "a" vector (p 394).
c kg -- kalman gain vector.
c f -- used in update (p 394).
c b -- ditto above.
c v - ditto above.
c p -- ditto above.
c dcilda -- "D super tilda" in propagation of
c covariance (p 396).
c y -- "Capital Y" matrix in prop. of coy. (p 396).
c phi -- state transition macrix.
C

C

double precision u(6,6),d(6),z,q,qn(6),cn(6,6),xhat(6),
i dplus(6),uplus(6,6),avec(6),stemp,stemp2,stmpt2,vtemp( 6 ),
2 mtemp(6,6),kg(6),a,caph(6),h,deltax(6),xref(6),f(6),b(6),
3 v(6),p(6),dtilda(12),y( 6 ,1 2 ),phi(6,6),pminus(6,6),t,deltat,
4 endtime,star(3),randv(6),starvec(14,3),pplus( 6 , 6 ),
5 sigma2,capr(6,6),prandv(6,6),xnew(6),prvh(3,3),rmag,vmaghmag
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double precision oldxhat(6,35),oldpplus(6,6,35),dt,dt2,dt3,dt4,
1 reftime,tlast,mldiff(35),mlsig2(35),time(35),ndo2si~g2,
2 ndoto2,eradius,eterms(5),adiff(35),asig2(35),suml(3,3),
3 sum2(3),pcoeff(3,3),coeff(3)
integer indx(3)
logical repeat
character*l digit(lO)
character*6 case
character*8 failname
character*19 file9
character*20 file7
character*21 file3,file5
character*22 file2,file4
common /fudge/ coeff
common /earth/ eradius,eterms
data digit /'''l, 'fl~~ 5' ,'6', '7' ,F , 9'/

c
case(l '4)-'case'
file2(l:20)='/tmp2/khicks/prefel.'
file3(l:19)='/tmp2/khi...k3s/refel.'
file4(l 20)-'/tmp2/khicks/prandv.'
file5(l:19)='/tmp2/khicks/randv.'
file7(l:18)-'/tmp2/khicks/pr-vh.'
file9(l: 17)-'/tmp2/khicks/rvh.'
failname(3 :8)-' failed'

c
1501 format (3(lx,e23.16))
1502 format (2x,a)
1503 format (a)
1504 format (lx, f12 .4,lx, i2,lx,a23.16, lx, i2)
1505 format (5(lx,e23.16))
c

read (*,*) istart,istop
"c Open the input file and the the case number to start
"c things off ....

do 9999 icase-istart,istop
"c set up the input file name:

nl-icase/10
n2-icase-nl*l0
case (5: 5)-digit(nl+l)
case(6 :6)-d'igit(n2+l)
write (*,*) 'opening ',case
open (8, file-case ,status-' old')

"c Read and ignore the case name ...
read (8,1502) case

c

c set up the output file niames:
file? '21:22)-case(5:6)
file3(20: 21)=case(5:6)
file4(21 :22)-case(5:6)
file5(20: 21)-case(5 :6)
file7(19: 20)-case(5:6)
file9(18:19)-case(S:6)

C
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c Open the other I/O files:
c open (2,file-file2)
c open (3,file=file3)

open (4,file=file4)
open (5,file-file5)

c open (7,file=file7)
c open (9,file-file9)

open (10,file-'star.dat',status-'old')
C

c Get the star vectors from 'star.dat'
do 2000 i-1,14

read (i0,*) istar,(starvec(i,j),j-l,3)
2000 continue

C

c Set up the Earth constants ....
call terra

c
c Now set some internal constants (like turning off drag):

n=6
t=O.Od+00
maxit=3
ibombed-O
istored-O
do 3510 i=1,3

coeff(i)=O.Od+00
3510 continue

c GET THE INPUT INFORMATION
c First, get U(-) for refel:

do 1001 i-1,6
read (8,*) (u(ij),j-l,6)

1001 continue
c Now get D(-) for refel:

read (8,*) (d(j),j-l,6)
c Get Cn (identity matrix) for refel:

do 1002 i-1,6
read (8,*) (cn(i~j),j-l,6)

1002 continue
c Qn for refel:

read (8,*) (qn(i),f-1
c Estimate of state .... .e zero:

read (8,*) (xhat(i),i-l,6)
c Sigma squared of the instrument:

read (8,*) sigma2
c Time between observations:

read (8,*) deltat
c read in "predict until" time:

read (8,*) endtime
C

"c set up the integer number of points between mean longitude
"c storages (store 5 points per day):

ibetween-21.4/deltat

c set up the maximum number of nonconvergent points (1/4 period
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c or 10, whichever is more):
maxbomb=.25*(6.2832/sqrt(eterms(1)/xhat(3)**3))/delLit
if (maxbomb .At. 10) maxbomb-l0

C

c echo it back to the default output to insure proper read
write (*,*) 'U(-) for refel:'
do 1003 i=1,6

write (*,1501) (u(i j),j-l,6)
1003 continue

write (*,*) 'D(-) for refel:'
write (*,1501) (d(j),j-l,6)
write (*,*) 'Cn for reference elements:'
do 1004 i=1,6

write (*,1501) (cn(i,j),j-l,6)
1004 continue

write (*,*) 'Qn for reference elements:'
write (*,1501) (qn(i),i-l,6)
write (*,*) 'xhat:'
write (*,1501) xhat
write (*,*) 'sigma squared of the instrument:',sigma2
write (*,*) 'delta t=',deltat
write (*,*) 'Predict until ',endtime,' when data runs out.'
write (*,*) 'Allow ',maxbomb, 'points to not converge in

1 ,maxit,' iterations.'
c Get the Pminus matrix for the reference elements... this is
c just to monitor the initialization of algorithm.

call formp(u,d,pminus)
write (*,*) 'Pminus for refel:'
do 312 i=1,6

write (*,1501) (pminus(i,j),j=l,6)
312 continue

write (*,*)
c
"c We can hardwire some of the covariance propagation algorithm
"c (Maybeck, page 397):

do 1005 i-l,n
do 1006 j-l,n

y(i,j+n)-cn(i,j)
1006 continue

dtilda(i+n)-qn(i)
1005 continue

c
c Now to initialize the theory ......

call esat6(0.Od+0O,xhat,randv,capr,l,0)
c
c Put the deltat at the top of all of the output files:
c write (2.*) deltat
c write (3,*) deltat

write (4,*) deltat
write (5,*) deltat

c write (7,*) deltat
c write (9,*) deltat*c
c
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c HERE'S THE MAIN OBSERVATION LOOP:
1000 continue

do 3000 mloop-l,ibetween
c first point read is at time zero .....

read (8,*,end-935) istar,z
do 2010 i-1,3

star(i)=starvec(i._ar,i)

2010 continue
c At this point, we have xhat(-),D(-),U(-),zQ,Qn,Cn,CapR
C

c Form P(-) for numerical efficiency ....
call formp(u,d,pminus)

C

C *****************************************************************k;*
C * These next calculations and prints of P(-) were for
C * debugging ..... left as comments in case they are needed
c * to study the filter performance later.
C
c Need to get P(-) for randv while we're at it..
c First, we'll need capr for the rotation:
c call esat6(O.0,xhat,randv,capr,1,l)
c call convp(pminus,prandv,capr,6,6)
c Get covariance for rvh frame
c call rot2rvh(randv,prandv,rmag,vmag,hmag,prvh)
c Now write the diagonal elements of the P(-)'s:
c write (2,1501) (pminus(jj,jj),jj-l,6)
c write (4,1501) (prandv(jj,jj),jj-l,6)
c write (7,1501) (prvh(jj,jj),jj-l,3)
c While we're at it, let's print our preupdated values (-):
c write (3,1501) xhat
c write (5,1501) randy
c write (9,1501) rmag,vmag,hmag
c
c Set up initial reference state ....

do 30 i-l,n
xref(i)=xhat(i)

30 continue
numit-i

c
c
"c Next comes the iteration loop .......

35 repeat-.false.
"c Set up the initial caph vector and get h (expected observation).
"c Capr comes along for the ride .....

call linearh(xref,randv,star,caph,capr,h)
q-sigma2*(l.d+O0-h*h)

c
"c The niext bit basically follows notation on 393 of Maybeck,
"c Volume 1.

"c Evaluate the scalar "a"
do 40 J-l,n

vtemp(j )-0. Od+00
do 45 k-l,n

vtemp(j)-vtemp(j)+caph(k)*pminus(k,j)
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45 continue

40 continue
a=0.Od+00
do 50 j=l,n

a-a+vtemp(j)*caph(j)
50 continue

a-a+q
c Evaluate Kalman Gain vector (kg)

do 55 i-l,n
kg(i)=0.Od+00
do 60 k=l,n

kg(i)=kg(i)+pminus(i,k)*caph(k)
60 continue

kg(i)-kg(i)/a
55 continue

c Update reference trajectory .....
stemp=O.Od+00
do 65 j-l,n

stemp-stemp+caph(j)*(xhat(j)-xref(j))
65 continue

stemp-z-h-stemp
do 70 j-l.,n

deltax(j)=kg(j )*stemp
xnew(j)=xhat(j)+deltax(j)

c simultaneously check the convergence:
if (dabs(xref(j)-xnew(j)) .gt. .ld+00*dsqrt(dabs(

1 pminus(j,j)))) repeat=.true.
c now copy that new element to xref in case we need to repeat!

xref(j)-xnew(j)
70 continue

c
c
c At this point, you'd expect to calculate a new randy corresponding

c to the new state. This is done in a hidden manner -- the next call

c to linearh will return a revised randv as a byproduct!
c
c check for repeat

if (repeat) then
if (numit .ge. maxit) then

if (ibombed .ge. maxbomb) then
write (*,*) 'Aborted after ',ibombed,'points failed to
write (*,*) 'converge in ',maxit, 'iterations.'
failname(l:l)-digit(nl+l)
failname(2:2)-digit(n2+l)
open (1l,file-failname)

write (li,*) 'Failed due to number of bombed iterations.'
close(ll)
goto 935

else

c We can't seem to converge.. .let's just propagate xhat(-)

c forward and pray for the best. As long as we were just

c oscillating about the solution, this is acceptable,

c but if we were diverging from the solution, all hell will

c break loose at the next few points. In other words, if the
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c filter really is failing, then we're just delaying the process
c until a few more points have been included in the estimate.
c Also, create a VALID xref in case we go directly into the
c calculation of drag parameters.

write (*,*) 'failed to converge at',t
ibombed-ibombed+l
do 5921 i-1,6

dplus(i)=d(i)
xref(i)-xhat(i)
do 5922 j=l,6

uplus(i,j)>u(i,j )
5922 continue
5921 continue

C numit=O
c write (*,1504) t,istar,z,numit
c since we're calling the t- stuff the t+ stuff, skip over the
c update section to the propagation section.... as a result we'll
c need capr and to replace randy w/ the values for xhat(-)

call linearh(xhat,randv,star,caph,capr,h)
goto 5923

endif
else

numit=numit+l
goto 35

endif
else

c write (*,1504) t,istar,z,numit
endif

c Now we have xhat(ti+) (the updated state) ....
do 80 j-l,n

xhat(j)=xref(j)
80 continue

c Revise estimate of caph, and randv. An added bonus is
c that this will bring back capr for the conversion of P(+)
c (if we're going to compute it):

call liLearh(xhat,randv,star,caph,capr,h)
C

c Update the covariance. Use Maybeck, page 394:
c

do 110 i-],n
f(i)-0.Od+00
do 115 k-l,n

f(i)-f(i)+u(ki)*caph(k)
115 continue

v(i)-d(i)*f(i)
110 continue

avec(l)-q+f(l)*v(1)
dplus(1)-d(1)*qiavec(1)

b(1)-v(1)
do 120 k-2,n

avec(k)-avec(k-l)+f(k)*v(k)
dplus(k)-d(k)*avec(k-i)/avec(k)
b(k)-v(k)
p(k)--f(k)/avec(k-l)
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do 125 j-l,k-l
uplus(j ,k)-u(j ,k)+b(j)*p(k)
b(j )-b(j)+u(j k)*v(k)

125 continue
120 continue

c Now, since uplus is upper unitary, put the ones on the diagonal ....
do 130 i=l,n

uplus(i,i)-l.Od+00
130 continue

C
5923 continue

c The above continue (5923) is where we'd jump to if we skipped an
c update due to nonconvergence. Note that the covariance matrix is
c going to grow as a result of ignoring data if we did jump to here!
C

c Write our updated variables (+) as we get them..
c write (3,1501) xhat
c Last call to linearh got randv i L xhat(+) so:

write (5,1501) randy
C

"c Form P(ti+) and print it out .... just for watching.. .filter doesn't
"c need it!
"c this is UD:

call formp(uplus,dplus,pplus)
C

c Still have capr matrix from the last call to linearh, so
c convert and print the diagonal elements:

call convp(pplus,prandv,capr,6,6)
c call rot2rvh(randv,prandv,rmag,vmag,hmag,prvh)
c write (2,1501) (pplus(jj,jj),jj-l,6)

write (4,1501) (prandv(jj,jj),jj-l,6)
c write (7,1501) (prvh(jj,jj),jj-l,3)
c

c We still need to write rmag,vmag, and hmag (+):
c write (9,1501) rmag,vmag,hmag
C

c End of Updating! ...............
C

c Now we propagate the state forward and get phi matrix
call esat6(deltat,xhat,randv,phi,4,1)

c

c Propagate covariance to next observation time ............
call propcov(y,dtilda,cn,phi,uplus,dplus,n,u,d)

c
c Now we have propagated the covariance P(-) at next time .....
c

c That's the end of this observation ...... loop back to get next obs!
t-t+deltat

3000 continue
c
c Okay, its time to store some values in case we decide to predict:

if (istored .eq. 34) then
c We've stored enough data, so let's shift the data to keep only
c the most recent values.
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c Save the last time .tored:
tlast=t-deltat

c Shift the vector down:
do 1103 i-2,34

do 1104 j-l,6
oldxhat(j,i-l)-oldxhat(j,i)
do 1108 k-l,6

oldpplus(j,k,i-l)-oldpplus(j,k,i)
1108 continue
1104 continue
1103 continue

c Now to store the newest stuff... recall that we've got the
c updated state before the last propagation stored as xref
c because we never overwrote that vector. Also, we have the
c makings of P(+) at that time still around.
c The next line would be necessary if we had yet to assemple
c P(+):
c call formp (uplus,dplus,pplus)

do 1109 i-1,6
oldxhat(i,34)=xref(i)
do 1110 j=l,6

oldpplus(i,j,34)=pplus(i,j)
1110 continue
1109 continue

c
else

c
c We don't have enough points to average yet -- we want to wait
c one week. So, tack this one into our arrays:

istored-istored+l

c If we didn't have pplus already assembled, we'd need the next line:
c call formp(uplus,dplus,pplus)
c Store this stuff at the end of the array:

do 1120 i-1,6
oldxhat(i,istored)-xref(i)
do 1121 j-l,6

oldpplus(i,j,istored)-pplus(i,j)
1121 continue

1120 continue
endif
goto 1000

935 write (*,*)
t-t-deltat
reftime-t
write (*,*) 'Last time with data was: ',reftime

write (*,*) 'Convergence Failed at:', ibombed, 'points.'
write (*,*)
write (*,*) 'Finished with input for ',case
write (*,*) 'Beginning prediction until ',endtime

c
c Begin the prediction section .....

c
* ~ c Now let's take the current pitand poatebackwards in

c time to get the predicted mean longitude w/o drag and the
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c predicted semimajor axis values. At the same time, get
c estimates as to the accuracy (the sigma squareds) of the
c estimates to incorporate into a weighted least squares routine.
c Before propagation things, note that the current time can
c generate a data point also. This is a zero difference between
c the mean longitude w/ and w/o drag [stored xhat(+) minus pre-
c dicted xhat(-)] and a zero difference between estimated (w/
c drag) and predicted (w/o drag) semimajor axis.
c The following line would be necessary if we had yet to assemble
c P(+):
C call formp(uplus,dplus,pplus)
c Now for the data from current point:

time(l)=0.Od+00
mldiff(l)=0.0d+00
mlsig2(l)-2.0d+00*pplus(4,4)
adiff(l)=0.0d+00
asig2(l)-2.0d+00*pplus(3,3)

c
c Now for the stored points .... handlc the most recent one (at
c t-tlast) separately. But, first, recall that the updated state
c and covarince for the most recent time with data is still
c available as stcred in xref, uplus, and dplus! While we're at it,
c let's tell the user ýhat those values were.

write (*,*)
write (*,*) 'The last state with data is estimated as:'
write (*,1501) xref

C

c This is the optional step that corrects the initial estia, te of
c the epoch semimajor axis:
c Since a call to esat6 with k-4 (or 5) scir 's up the calling argue-
c ments, call with a copy of the epoch state:

do 3600 j-l,6
vtemp(j )-xref(j)

3600 continue
c Create data for last stored point...

dt--(t-tlast)

c Get phi:
call esat6(dt,vtemp,randv,phi,4,l)

c Propagate covariance using Eq. 4-10 if weighted least squares
c is desired. (pseudonoise matrix-0 for determanistic portion)

call convp(pplus,mtemp,Vhi,6,6)

time(2)-dt
adiff(2)-oldxhat(3,34)-vtemp(3)
asig2(2)-oldpplus(3,3,34)+mtemp(3,3)

c The rest of the stored points are evenly spaced, so a do loop is
c perfect...

do 3610 i-33,1,-i
dt-dt-deltat*ibetween
do 3620 j-l,6

vtemp(j)-xref(j)
3620 continue

call esat6(dt,vtemp,randv,phi,4,l)
call convp(pplus,mtemp,phi,6,6)
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time(36-i)-dt
adiff(36- i)-oldxhat(3,i) -vtemp(3)
asig2(36-i)-oldpplus(3,3,i)+mtenip(3,3)

3610 continue
c Zero out the sumis:

do 3611 i-1,2
do 3612 j-1,2

suml(i,j)-0.Od+OO
31612 continue

sum2(i)=0.Od+00
3611 continue
c First the terms from delta semimajor axis:

write (*,*) 'The data for delta semimajor axis is:'
do 4113 4-=1,35

c we decided against weighted least squares so this next line
C is necessary:

asig2(i)=l.0d+00
write (*,1501) time(i),adiff(i),asig2(i)
dt-time(i)
dt2=dt*dt
surnl(l, l)-suxnl(l,1)+l.Od+00/asig2(i)
suml( , 2)-suxnl(l ,2)+dt/asig2(i)
suml(2, l)-suml(2, l)+dt/asig2(i)
suml(2 ,2)-suml(2 ,2)+dt2/asig2(i)
sum2(l)-sum2(l)+adiff(i)/asig2(i)
sun2 (2)=suni2(2)+adiff(i)*dt/asig2(i)

4113 continue0 ~pcoeff(1, 1)-i. Od+00
pcoeff(1, 2)=0.Od+00
pcoeff(2 , l)=0Od+00
pcoeff(2 ,2)-i. Od+00
call ludcmp(sunil,2,3,indx,stemp)
do 3630 j-1,2

-i1l lubksb(surnl,2,3,indx,pcoeff(l,j))
3630 -. -inue

do 3640 i-1,2
coeff(i)-0.Od+00
do 3650 j-1,2

coeff(i)-coeff(i)+pcoeff(i,j)*suni2(j)
3650 continue
3640 continue

write (*,*)
write (*,*) 'the coeff are'
write (*,1505) coeff(1), coeff(2)
write (*,*) 'with covariance of'
write (*,1505) pcoeff(l,l),pcoeff(2,2)
xref(3)-AKref(3)+coeff(l)
write (*,*) 'corrected semimajor axis is:',xref(3)

c
c For giggles, what is n dot over two from the delta a
c data only?

ndoto2--.75d+00*dsqrt(eterms(l))*xref(3)**-2.5d+00
1 *coeff(2)
write (*,*) 'ndot over two from this data is' ,ndoto2
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c Zero out the coeff to avoid screwing up the dynamics in
c the next section:

coeff(l)=O.Od+00
coeff(2)=O.Od+00

C

c Now for the Big Least Squares run! Copy the corrected state so
c we screw up our only copy:

do 3511 j-l,6
vtemp(j)=xref(j)

3511 continue
dt--(t-tlast)

call esat6(dt,vtemp,randv,phi,4,l)
c Use equation 6-10 from prospectus to propagate the covariance
c backwards. (Note that we DON'T make use of the noise matrix in
c this determanistic portion!):

call convp(pplus,mtemp,phi,6,6)
c

c Form estimates for the differences w and w/o drag. (Be
c careful w/ quadrant on mean longitude: experiments w/ perfect
c data shows that we expect less than .1 radian difference
c between predicted (that w/o drag) and observed mean longitude
c (that w/ drag) over the span of one week.
c

stemp-oldxhat(4,34)-vtemp(4)
if (dabs(stemp) .gt. 3.0d+00) then

c Assume this is a quadrant problem:
if (stemp .gt. 0) then

stemp-stemp-6.283185307179586d+00
else

stemp=stemp+6.283185307179586d+00
endif

endif
mldiff(2)=stemp
mlsig2(2)-oldpplus(4,4,34)+mtemp(4,4)
adiff(2)-oldxhat(3,34)-vtemp(3)
asig2(2)-oldpplus(3,3,34)+mtemp(3,3)
time(2)-dt

c Now for the remaining stored data points (33 more):
do 1106 i-33,1,-l

dt-dt-deltat*ibetween
c Since we screw up the calling element array, copy it to a
c temp array before the call:

do i107 j-l,6
vtemp(j )-xref(j)

1107 continue
call esat6(dt,vtemp,randv,phi,4,1)

c
c Now propagate covariance:

call convp(pplus,mtemp,phi,6,6)
C

c Form estimates for the differences w and w/o drag. (Be
c careful w/ quadrant on mean longitude: experimertq w/ perfect
c data shows that we expect less than .1 radian di'ference
c between predicted (that w/j drag) and observed mean longitude
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c (that w/ drag) over the span of one w~eek.

stemp-oldxhat(4, i) -vtemp(4)
if (dabs(stemp) .gt. 3.0d+00) then

c Assume this is a quadrant problem:
if (stemp .gt. 0) then

stemp-stemp-6 .283l85307l795--86d+00
else

sternp-stemp+6.283185307179586d+00
endif

endif
mldiff(36- i)-stemp
mlsig2(36-i)=oldpplus(4,4, i)±mtemp(4,4)
adiff(36-i)==oldxhat(3, i) -vtemp(3)
asig2(36-i)-oldpplus(3, 3, i)+mtdmp(3,3)
time(36- i)=dt

1106 continue
C

c Now we form the two sums required for the weighted least
c squares routine:

do 1111 j-1,3
do 1112 i-1,3

suxnl(i,j)=0.Od±00
1112 continue

sum2(j )-0. Od+0O
1111 continue

40 write (*,*)
c First the terms from delta semimajor axis:

stemp--2.0d+00/3.0d+O0/dsqrt(eterms(l))*xref(3)**
1 2.5d+00
stemp2=stemp*stemp
stmpt2-2 . d+00*s temp
write (*,*) 'The data for delta semimajor axis is.'
do 1113 i-1,35

c W~e aren't using weights, so ...
asig2(i)-!.Od+QO
write (*,1501) time(i),adiff(i),asig2(i)
dt-time( i)
dt2-dt*dt
su~nl(2 ,2)-stuml(2,2)+stemp2/asig2(i)
suinl(2 ,3)-suml(2 ,3)4-stmpt2*stemp*dt/asig2(i)
sumi (3, 2)-suxnl(3 ,2)+stmpt2*stemp*dt/asig2(i)
sunil(3,3)-sum1(3,3)+stmpt2*stmpt2*dt2/asig2(i)
sum2(2)-sum2(2)+adiff( i)*stemp/asig2(i)
suni2(3)-sum2( 3)+adiff( i)*stmpt2*dt/asig2(i)

1113 continue
write (*,*)

c Now the terms from delta mean longitude:
write (*,*) 'The data for delta mean lo~ngitude is:'
do 1114 i-1,35

c We aren't using weights ....0 ~mlsig2(1)-1. . d÷00
write (*,1301) t'',eMi,mldiff(i),mlsig2(i)
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dt-time( i)
dt2-dt*dt
dt3-dt2*dt
dt4-dt2*dt2
dt-dt/mlsig2 (i)
dt2-dt2/mlsig2(i)
dt3=dt3/mlsig2 (i)
dt4=dt4/mlsig2 (i)
suml(l,l)=suml(1, 1)+l.Od±OO/mlsig2(i)
suml(1, 2)=suml(1, 2)+dt
suml(1, 3)-suml(l, 3)+dt2
sunil(2 , 1)suntl(2 ,l)+dt
suml(2 ,2)=suml(2 ,2)+dt2
suml(2, 3)-suml(2 ,3)+dt3
suml(3, l)=suml(3,l)+dt2
suml(3 ,2)-suml(3 ,2)+dt3
suml(3, 3)=suml(3, 3)+dt4
suir.2(1)=sum2(1)+inldiff(i)/mlsig2(i)
sum2(2)=sum2(2)±nildiff(i)*dt
suxn2(3)-suin2(3)+mldiff(i)*dt2

1114 continue
c Get the covariance of the coefficents:

do 12 i-1,3
do 11 j-1,3

pcoeff(i,j)-O0d4-OO
11 continue

pcoeff(i, 1)-i. Od+OO
12 continue

call ludcmp(sunil,3,3,indx,stemp)
do 13 j-1,3

call lubksb(suml,3,3,indx,pcoeff(l,j))
13 continue

c Now we need to multiply pcoeff times sum2
do 1115 i-1,3

coeff(i)-O. d0d4O
do 1116 j-1,3

coeff(i)-coeff(i)+pcoeff(iL,j )*sum2(kjj
1116 continue
1115 continue

write (*,*)
write (*,*) 'the coeff are
write (*,1505) coeff
write (*,*)
write (*,*) 'with a covariance of
write (*,1505) pcoeff
write (*,*)
write (,)'a corrected mean longitude at last time with'
wrice (,)'data is:'
write (,)xref(4)+coeff(l)

C
c We're going to propage forward from reftime. Since the
c numerical derivative used to get phi falls apart when
c used over long times, we stop computing the covariance
c estimates. Instead, keep it constant at the last value.
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c Since a -all to esat6 with k-5 screws up the calling elements,
c always copy our reference elements and use the copy in
c the call.
C Let's convert the last stored covariance to prvh for output.
c (Note that the last stoted covariance is p(-) for the first
c predicted time! An interesting extra .... )

call formp(u,d,pminus)
call esat6(0.0d+00,xhat,randv,capr,1,1)
call convp(pminus,prandv,capr,6,6)

c call rot2rvh(randv,prandv~rmag,vmag,hmag,prvh)
C
c Now start the prediction loop. Start by fixing the mean
c longitude at epoch (last time w/ data).

xref(4)=xref(4)+coeff(l)
t-t+deltat

140 if (t .gt. endtime) goto 9998
dt=t-rettime

c Now we propagate the state forward (again copying the
c state to avoid screwing it up):

do 153 i=],n
--h at'i-xref `6

153 continue
call esat6(dt,xhat,randv,phi,5,0)

c
c No need to play with the covariance since it's being kept
c constant at the last stored value.
c write (2,1501) (pminus(jj,jj),jj-l,6)

write (4.1501) (praridv(jjjj),jj-l,6)
c write (7,1501) (prvb(jj,jj),jj-l,3)
c We did, however, lose our calculation of rmag, vrag,
c and hmag by not having the call to rot2rvh to find these
c values from randy, so we better do it now:
c rmag-dsqrt(randv(l)*rardv(l)+randv(2)*randv(2)+
c I randv(3)*randv(3))
c vmag-dsqrt(randv(4)*randv(4)+randv(5)*randv(5)+
c 1 randv(6)*randv(6))
c vtemp(l)-randv(2)*randv(6)-randv(3)*randv(5)
c vtemp(2)-randv(3)*randv(4)-randv(l)*randv(6)
c vtemp(3)-randv(l)*randv(5)-randv(2)*randv(4)
c hmag-dsqrt(vtemp(l)*vtemp(l)+vtemp(2)*¢temp(2)+
c I vtemp(3)*vtemp(3))
c write (9,1501) rmag,vmag,hmag
c write (3,1501) xhat

write (5,1501) randy
c Done.. .move on to next time...

t-t+deltat
goto 140

9998 continue
c We're done with this case, prediction and all..

write (*,*) 'Predicted Refel at final time would be:'
write (*,1501) xhat
write (*,*)
write (*,*) 'P(-) for refel at this time would be:'
do 936 i-1,6
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write (*,1501) (pminus(i,j),j=l,6)
936 continue

write (*,*) 'finished with case ',case
write (*,*)

c close(2)
c close(3)

close(4)
close(5)

c close(7)
close(8)

c close(9)
close(10)

9999 continue
stop
end

C

c
c ----------------------------------------------------------------------
c
c

subroutine Esat6(t,elemts,randv,phi,k,mode)
c
c This is a driver for Kaare Aksnes' version of Dirk
c Brouwer's first order theory. It includes J2, J3
c J4, J5, and has had the effect of drag on the Mean
c Anomaly added to it. This driver allows the effect
c of drag on the Semimajor axis to be included also.
c
c W. Wiesel, August 1985
c
c Modified by Kerry Hicks, AFIT, May 1988, 5 August 1988
c 5 January 1989, 11 January 1989
c
c Significant changes by Hicks:
c 1) The following are the only VERIFIED working
c combinations for calling ESAT6 (Aksnes theory
c still supports it's normal stuff as long as the
c drag parameters stored in the common block "fudge"
c are set to zero.):
c k-i, mode-O (For tc.O, drag effects on semimajor
c axis are ignored.)
c k-i, modc-l (Note that drag effects on semimajor
c axis are ignored for this situation.)
c (This doesn't matter for my problem, as
c this combination is only used in the
c stochastic "where am I" problem where
c prnpagation iq over short times or I'm
c using the call to get the rotation matrix
c "capital R.")
c k-2, mode-O (I don't k-2, so it has not been verified!
c but will ignore the drag effects on a if
c t.tO)
0c k-2, mode-i (ditto the above)
c k-3, mode-O
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c k-3, mode-i (illegal combination)
c k-4, mode-O (for tc>O, ignores drag variation on a)
c k=4, mode-i (ditto)
c (Note that k-4 is intended for the
c stochastic portion where I ignore
c drag.)
c k=5, mode-O
c k=5, mode-I
c (Note that k-5 is slower than k=4 so
c it should only be used when propagating
c over times when drag effects are signifi-
c cant.)
C

c 2) Drag effects are stored in the common block "fudge."
c The linear and quadratic corrections to mean anomoly
c take place within Aksnes' theory (subroutine aksnes) and
c the corrections to the semimajor axis takes place in
C this routine. Mean longitude at epoch corrected in
c main routine
C

c 3) This driver uses the equinoctal elements gir-n below.
c These elements were chosen because they are better defined
c than the classical set when i or e is near zero. Since
c the estimation problem iterates, it's better to use well
c defined variables!
C

c VARIABLES:
c t - time
c elemts: These are the equinoctal elements: af, ag,
c semimajor axis (LUs), mean longitude (radians),
c chi, and psi.
c randv: x,y,z,x dot,y dot, z dot
c
c coeff: drag factors, as described above.
c 1 - delta mean longitude at epoch (used in main)
c 2 - delta n at epoch (delt -- sub-zero)
c 3 - n-dot-over-2
c
c OPTIONS:
c mode-O, calc orbit only
c mode - 1, partials matrix too
C
c k - 1 initialize theory & calc r and v
c (If mode-l, then phi is really partial randy/partial
c elements.)
c k - 3 calc mean elements from input r and v (not verified with
c drag terms .... I never needed it)
c - 4 update elemts to new epoch time t
c (If moae-., tlpn phi is partial(new elemts)/partial(old
c elemts.) (Drag effects on seinimajor axis are ignored.)
c k - 5 update elemts to new epoch time t.
c (If mode-l, then phi is partial(new elemts)/partial (old
c elemts.) (Drag effects ARE INCLUDED.)
c
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double precision t,elemts(6),randv(6),phi(6,6),const(24)
1 ,coeff(3),gamma

common /earth/ re,b(5)
common /units/ du,tu,vu
common /fudge/ coeff
double precision du,tu,vu
double precision re,b
double precision delemt(36),dconst(144),drandv(6)
double precision newele(6),del(6)

c
c displacement for numerical partials
c

do 1000 i-1,6
del(i)-elemts(i)*l.Od-06

1000 continue
if (k .eq. 4) go to 200
if (k .eq. 5) go to 500

c
c initialize theory, calc r and v, or get elemtnts from r and v
C

call ak6drv(k,t,elemts,randv,const)
if(k .eq. 3) then

c Correct the semimajor axis at epoch (subtract correction
c because we are "backing up" to epoch):

elemts(3)=elemts(3) 4 4.0dOO/3.0d+00/dsqrt(b(l))*
2 elemts(3)**2.5d+00*coeff(3)*t

return
endif
if (mode .eq. 0) return
if(k .eq. 2) go to 150

c
c initialize displaced orbits for rartials
c

do 120 i - 1,6
do 119 j - 1,6

119 delemt(6*(i-l)+j) = elemts(j)
120 delemt(7*i-6) - delemt(7*i-6) + del(i)

c
150 continue

c
c calculate numerical partials matrix
c

do 180 i - 1,6
call ak6drv(k,t,delemt(6*(i-l)+l),drandv,dconst(24*(i-l)+l) )
do 180 j 1,6

180 phi(j,i) - (drandv(j) randv(j) )/del(i)
return

c
c

200 continue
c
c reinitialize epoch time while ignoring the effect of drag
c on semiffajor axis.
C
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call ak6drv(l,t,elemts,randv,const)
call ak6drv(3,0.d0,newele,randv,const)

c done?
if(mode .eq. 0) go to 300

C

c obtain partials matrix of reinitialization
C

do 220 i = 1,6
do 219 j - 1,6

delemt(6*(i-l)+j) - elemts(j)
219g continue

delemt(7*i-6) - delemt(7*i-6) + del(i)
220 ccrtinue

c partials maitrix
do 280 i-1,6

call ak6drv(l,t,delemt(6*(i-l)4-l) ,drandv,dconst(l))
call ak6drv(3,0.d0,delemt(6*(i-l)+l) ,drandv,dccn-,st(l))
do 281 j - 1;A.

phi(j,i) =(delemt(6*(i-l)+j) - newele(j))/del(i)
281 continue
280 continue

goto 300
c

500 continue
c
c reinitialize epoch time while including effect of drag on
c semimajor axis.0 c

call ak6drv(l,t,elemts,randv,const)
call ak6drv(3,0.dO,newele,randv,const)

c Aksnes' theory took the semimajor axis forward as a constant.
c Use the drag effect to fix this:

gamxna--2.Od+00/3.0d+00/dsqrt(b(l))*elemts(3)**2.5d±00
newele(3)=elemts(3) + gamxna*coeff(2) + 2.0d+00*gainina*coeff(3)*C

c Now get the correct randy for this:
call ak6drv(l,0.Od+00,newele,randv,const)

c done?
if(mode .eq. 0) go to 300

c
c obtain partials matrix of reinitialization
c

do 520 i - 1,6
do 519 j - 1,6

delemt(6*(i-l)+J) - elemts(j)
519 continue

delemt(7*i-6) - delemt(7*i-6) + del(i)
520 continue

c partials matrix
do 580 i-1,6

call ak6drv(l,t,clelemt(6*(i-l)+l),drandv,dconst(l))
call ak6drv(3,0.dO,delemt(6*(i-l)+l) ,drandv,dconst(l))
delemt(6*(i-l)+3)-delemt(6*(i-l)+3) - 4.0d+00/3.Od+00/

I dsqrt(b(l))*delemt(6*(i-l)+3)**2.5d+00*coeff(3)*t
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call ak6drv(l,O.Od+00,dclemt(6
do 581 j -1,6

phi(j,i) - ( delemt(6*(i-1l
581 continue
580 continue

300 continue
do 310 1 - 1,6

310 elemts(i) -newele(i)

return
end

subroutine ak6drv(k, c,fg,randv,co

This routine drives the Aksnes th
elements to Aksnes' reference ele
code and converts his elements to

double precision t,fg(6),ak(6),ra
Ilongp. tanio2 ,sra, arc tan

if (k .ne. 3) then
Convert FG to AK:
ak(6)-arctan(fg(5) ,fg(6))
longp-arctan(fg(2) ,fg(l))
ak(5)-longp-ak(6)
if (ak(5) Alt. 0.Od+00) ak(5)-
ak(3)-fg(4) -longp
if (ak(3) Alt. 0.0d4-00) ak(3)-
sra-dsin(ak(6))
ak(4)-2.0d+00*arctan(fg(5) ,sra
if (ak(4) .gt. 6.2831853071795
I -6.283185307179586d--00
ak(2)-dsqrt~fg(l)*fg(l)+fg(2)*:
ak (1)-fg( 3)

endif

call aksnes(k,t,ak,randv,const)

if (k .eq. 3) then
Convert AK to FG
longp-ak(5)+ak(6)
if (Iongp .gt. 6.283185307179581
I -6.283185307179586d+00
tanio2-dtan(ak(4)/2 .Od+00)
fg(l)-ak(2)*dcos(longp)
fg( 2)-ak(2 )*dsin( longp)
fg(3)-ak(l)
fg(4)-longp-Eak(3)
if (fg(4) .gt. 6.28318530717958(
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-6.283185307179586d+00
fg(5)-tanio2*dsin(ak(6))
fg(6)=tanio2*dcos(ak(6))

endif
C

return
end

C

C

C -----------------------------------------------------------------------------------------------

C

subroutine terra

common /earth/ re,b(5)
common /units/ du,tu,vu
double precision du,tu,vu
double precision re,b

C

c initialize data for earth: radius(DU),GM(DU**3/TU**2),J2,J3,J4
c Values from JPL DEll8
c

re - l.dO
b(l) - l.dO
b(2) - .10826270d-02
b(3) - -. 25364140d-05
b(4) - -. 16233497d-05
b(5) - -. 22608567d-06

c
c conversion constants: 1 DU - km, 1 TU sec, 1 VU in km/sec

du - b378.14d+00
tu - 806.81168475130d+00
vu - 7.90536394115830d+00

c note: these definitions can be overridden by reinitializing
c the commons /earth/ and /units/ in a main program
c this may endanger the scaling used to obtain numerical partials
c

return
end

c
c
c ----------------------------------------------------------------------
c
c

subroutine aksnes(k,t,oe,pos,const)
c
c calculates position and velocity from mean elements
c and vice versa
C

c Dirk Brouwer's first order satellite theory as modified
c by Kaare Asknes- perturbations in terms of the Hill variables
c Programmed by K. Asknes, JPL, 1970.
c Modified by W. Wiesel, AFIT, 1985
c Modified by Kerry Hicks, AFIT, May 1988, 5 August 1988
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c
c k = I for initialization and computation of pos. and vel
c k = 2 for computation of pos. ind vel. without initialization
c (a previous call with k=l must have occured)
c k - 3 for computation of mean elements from pos. and vel.
C

C t = time
c oe(l) = semi-major axis
c oe(2) = eccentricity
c oe(3) - mean anomaly in radians at epoch (t=0)
c oe(4) = inclination in radians
c oe(5) = argument of perigee in radians at epoch
c oe(6) - right ascension of ascending node, radians, at epoch
c re - equitorial radius of primary
c b(l) = GM (unit of length**3/unit of time**2)
c b(2),b(3),b(4),b(5) - geopotential constants J2, J3, J4, J5
c pos = x,y,z,xdot,ydot,zdot
c

dimension oe(6),pos(6),hv'7),hvo(7),err(7),sc(7)
double precision t,oe,re,b,pos,pi,tpi,c,s,go,ho,slo,sgo,sho

l,hv,fi,su,cu,si,gamma,hvo,err,rd,r,u,sh,sf,cf,f,ql,q2,sl,c2,c4,e
2,e2,eta2,eta,qo,ga,ga2,ga3,ga4,xn,sll,sgl,shl,d,dl,sc,q3,sg,
3 sine,cose,slml,clml,slpl,clpl,s2u,c2u,s2m2,c2m2,s2ml,c2mls2pl
4,c2pl,drd,dr,du,dh,dg,g,ci,st,ct,sfi,cfi,arctan

double precision const(24),theory(24),coeff(3)
common /fudge/ coeff
common /earth/ re,b(5)

c SPECIAL NOTE: Because this routine relies on values being
c kept around after an initialization call (k=l), some fortrans
c will require you to add the "SAVE" command to this routine. Ehe
c version on AFIT'S ICC minisupercomputer and Microsoft Fortran
c Version 3.2 for MSDOS do NOT need this command. Note that the
c inclusion of the SAVE command will NOT harm the execution if
c it is not required.... it's just an extra precaution you might
c want to take if you're not sure ..... It is not included here
c because, while I don't know for sure, it might slow the execution
c a bit.
c

t2-t*t
pi - 3.141592653589793d0
tpi - 2.dO*pi
go to (5,50,10),k

c
c initialization
c

D continue
c - dcos(oe(4))
s - dsin(oe(4))
go - dsqrt(b(l)*oe(1)*(l.dO-oe(2)*oe(2)))
ho - go*c
slo - oe(3)
sgo - oe(5)
sho - oe(6)
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go to 25
c mean elements from position and velocity

c-)mpute instantaneous Hill variables hv
10 iter =-1

hv(4) dsqrt(pos(l)*pos(l) + pos(2)*pos(2) + pos(3)*pos(3))
hv(l) -(pos(l)*pos(4) + pos(2)*pos(5) + pos(3)*pos(6))./hv(4)
hv(2) =dsqrt( dabs(pos(2)*pos(6) -pos(3)*pos(5))**2.dO

I ~+dabs(pos(3)*pos(4)-pos(l)*pos(6))**2.d0
2 +dabs(pos(l)*pos(5) -pos(2)*pos(4) )**2.dO
hv(3) =pos(l)*pos(') -pos(2)*pos(4)
c =hv(3)/hv(2)

fi =arctan(pos(2),pos(l))

su =pos(3)/hv(4)

cu =(hv(4)*pos(6) - hv(l)*pos(3))/hv(2)
si -dsqrt(su*su+cu*cu)

gamma = b(2)*( blll)*re )**2.dO / dabs(hv(2))**4.dO
if( si At. gamma ) go to 13
hv(5) - arctan(su,cu)
hv(6) - fi - arctan(c*su,cu)
if(hv(6) Alt. 0.dO ) hv(6) -hv(6) + tpi
hv(7) - O~dO
go to 14

13 hv(5) = su
hv(6) - cu
hv(7) - fi

14 do 15 i =1,7
hvo(i) =hvMi

15 err(i) =O~dO

c calculate mean Hill variables hvo b-~ iteration
20 rd - hvo(1)

go - hvo(2)
ho - hvo(3)
r - hvo(4)
u - hvo(5)
sh - hvo(6)
sf - go*rd/b(l)
cf - go*go/b(l)/r - l.dO
f - arctan(sf,cf)
oe(1) - b(1)/(-rd*rd + 2.d0*b(1)/r-dabs(go/r)**2.d0)
oe(2) - dsqrt(sf*sf + cf*cf)
q1 - r*rd/dsqrt(b(l)*oe(l))
q2 - l.dO - r/oe(l)
sl - arctan(ql,q2) - ql
if(sl Alt. O.dO ) si - si + tpi.
c - ho/go
s - dsqrt(dabs((l.d0+c)*(l.dO-c)))
if(si .ge. gamma) go to 25
u - arctan(hvo(5),hvo(6))
sh - hvo(7) - u
s - dsqrt(hvo(5)*hvo(5) + hvo(6)*hvo(6))

25 c2 - c*c
c4 - c2*c2
e - oe(2)
e2 - e*e
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eta2 i~dO - e2
eta =dsqrt(eta2)

qo - oe(1)*(1.d0 - e2)
ga - b(2)*dabs(re/qo)**2.dO
g32 - ga*ga
ga3 - 0.dO
&a4 - O~dO
if(b(2) .eq. OAdO) go to 26
ga3 = b(3)/b(2)**2.dO * qo/re,
ga4 - b(4),'b(2)**2d0

26 xn =dsqrt(b(l)/oe(l)**3.dO)

s~l - -0.75d0*eta*xn*ga*(l.dO-3.d0*c2-1.d0/32 .dO*ga*(
I -15.d0±16.d0*eta+25.d0*eta2 + ( 30.d0-96.d0*eta-90.d0*
2 eta2)*c2 + (105.dO+144.d0*etal-25.d0*eta2)*c4 - 15.d0*ga4<1-(
3 3.dO-30.d0*c2+35.dO*c4)*e2))
sgl = -0.75d0*xn*ga*(I.dO-5.dO*c? -I.dO/32.d0*ga*(
L -35.d0+24.d0*eta+25.d0*eta2 + (90.dO-l92.dO*eta-126.dO*
2 eta2)*c2 + (385.d0+360.dO*eta+45.dO*etýa2)*c4 - 5.dO*
3 ga4*(4 .dO*(3 .dO-36 .dO*c2+49 .dO*c4) + 9 .dO*(lKdO-14 .dO*c2

4+21.dO*c4)*e2)))
shi - -1.5d0*xn*ga*c*(l.d0+1.d0/16.d0*ga*(5.dO-12.dO*eta-9.dO*
1 eta2 + (35.dO+36.dO*eta+5.dO*eta2)*c2 + 5.dO*ga4*(3.dO-
2 7.dO*c2)*(2.dO+3.dO*e')))
d =(1.d0-c2)*(1.d0-15.d0*c2+5.d0*ga4*(1.d0-7.d0*c2) )/(1.dO
I -5.d0*c2)
dl (- (l.d0+30.d0*c2-75.d0*c4-5.d0*ga4*(3.d0-14.dO*c2+35.d0*c4))
I /dabs(l.dO-5.dO*c2)**2.dO0c save theory constants
do 27 ii =1,24

27 const( ii) =theory~ii)

if(k.ne.3) go to 50
iter - iter + 1

c compute the scaling factors of the Hill variables
sc(l) - xn*oe(l)
sc(2) -sc(l)*oe(l)
sc(3) - sc(2)
sc(4) - oe(l)
sc(5) - tpi
sc(6) - tpi
sc(7) - tpi
q3 - OdO
do 30 i - 1,7
q3 - dniaxl(q3,dabs(hvo(i) -err(i))/sc(i))

30 err(i) - hvo(i)
if((iter.lt. 10) and. (q3 .gt. l.d-8)) go to 60
if(iter eq. 10) write(*,32) q3

32 format(lx, 'warning: error after 10 iterations -, ,d15.5)
oe(4) - arctan(s,c)
oe(3) - si t*(xn+sll) - coeff(2)*t - coeff(3)*t2
o9~(5) - u -f - t*sgl
oe(6) - sh -t*shl

do 35 1 - 3,6
J - oe(i)/tpi
if(oe(i) Alt. 0.dO) j - J - 1
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35 oejl) = (oe(i)-dble(j)*tni)
return

50 continue

C compute position and velocity at time t

si t*(xn+sll) + slo + coeff(2)*t + coeff(3)*t2
sg =t*sgl +- sgo
sh - t*shl + sho
qi - idint(sl/tpi)
if(sl It. O.dO) qi - qI - 1.dO
qI - tpi*ql
si si - qi
call kepler(sl e ,sine, case)
r - oe(l)*(l.dO-e*cose)
sf - eta*sine*oe(l)/r
cf -(cose-e)*oe(1)/r
rd - b(l)*e*sf/go
f = arctan(sf,cf)
u - sg~f~ql
irev =u/tpi

u -u -tpi*dble(irev)

sf -e*sf

cf -e*cf

60 continue
su - dsin(u)
cu - dcos(u)0simi - dsin(u-f)*e
dlm1 - dcos(u-f)*e
sipI - dsin(u+f)*e
dlpi dcos(u+f)*e
q2 - 2.dO*u
s2u. - dsin(q2)
c~u - dcos(q2)
q3 - q2 - 2.dO*f

s2rn2 - e2*dsin(q3)
c2m2 -e2*dcos(q3)
q3 - q2 - f

s2mi - e*dsin(q3)
c2ml - e*dcos(q3)
q3 - q2+ f

s2pl - e*dsin(q3)
c2pI - e*dcos(q3)
q3 - l.dO/(i.dO+eta)
drd -- ga*qo*go/(2.dO*r*r)*((l.dO-c2)*s2u -d/8.dO*s2ml

1 -ga3*cu*s + O.5dO*(i.dO-3.dO*c2)*(q3±eta*dabs(r/qo)**2.d0
2 )*Sf)
dr - ga*qo/4.dO*( (-I.dO-c2)*c2u - d/4.dO*c2ml f- 2.dO*ga3*

I su*s + (l.dO-3.dO*c2)*(l.dO+q3*cf + 2.dO*eta*r/qo))
du - -ga/4.dO*( dl/4.dO*c2*s2m2 - (2.dO-5.dO*c2+O.5dO*d)*
I s2ml -O.5dO*(l.dO-7.dO*c2+d/4.dQ*e2)*s2u + c2*s2pi -

2 ga3*s*( 4.dQ*cu+clpl) + 3.dO*(l.dO-5.dO*c2)*(f-sl) +03 2.dO*(l.dO-6.dO*c2)*sf + (l.dO-3.dQ*c2)*q3*sf*(2.dO+cf))
dh - -ga*c/4.dO*(6.dO*sf-3.dO*s2ml-s2p1-dl/4.dO*s2m2 + 6.cIO*(
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1 f-si) - 3.dO*s2u)
dg - ga*go/4.dO*((1.d0-c2)*(3.d0*c2m1+c2p1) -d/4.dO*c2m2 +
1 2.d0*ga3*slml*s + 3.c10*(1.d0-c2)*c2u)

if(s Alt. ga) go to 65
du - du + ga/4.dO*ga3*(l.dO+c2)/s*clml
dh - dh - ga/2.dO*c*ga3/s*clml

65 if(k ne. 3) go to 70
hvo(1) - hv(1) - drd
hvo(2) - hv(2) - dg
hvo(4) - hv(4) -dr
hvo(5) - hv(5) - du
hvo(6) - hv(6) - dh
if(si .ge. gamma) go to 20
hvo(5) - hv(5) -0.5d0*ga*ga3*cf
hvo(6) - hv(6) + 0.5d0*ga*ga3*sf
hvo(7) - hv(7) - (du+dh)
go to 20

70continue
rd - rd + drd
r - r + dr
u - u + du

sh - sh + dh
g - go + dg
ci - ho/g
Si - dsqrt(dabs( (1.dO+ci)*(1.dO-ci)))
if(s ge. ga) go to 80
st - s*su + 0.5d0*ga*ga3*cf
fi - u+sh
q2 = g*(s*cu - 0.5dO*ga*ga3*sf)
go to 100

80 continue
cu - dcos(u)

su - dsin(u)
st - si*su
fi - sh + datan2(ci*su,cu)
q2 - g*si*cu

100 continue
ct -dsqrt(dabs((1.dO+st)*(l.dO-st)))

sfi -dsin(fi)

cfi -dcos(fi)

pos(l) - r*ct*cfi
pos(2) - r*ct*sfi
pos(3) - r*st
q3 - dabs(r*ct)**2.dO
pos(4) - pos(1)*rd/r - (pos(1)*st*q2 + pos(2)*ho)/q3
pos(5) - pos(2)*rd/r - (pos(2)*st*q2 - pos(1)*ho)/q3
pos(6) - pos(3)*rd/r + q2/r
return
end

C

C

*~~ C.......................................................................................

C

c
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subroutine kepler(sl,e,sine,cose)
C

c solve kepler's equation
c

double precision sl,tpi,e,sine,cose,xl,x'o,eo,el,diff
tpi = 6.283185307179586d0
xl = dmod(sl,tpi)
eo - xl
i -i

10 sine - dsin(eo)
cose - dcos(eo)
xlo - eo - e*sine
el - eo + (xl-xlo)/(l.d0-e*cose)
diff - el - eo
if(dabs(diff) .At. l.d-12) go to 30
if(i .gt. 49) go to 20
eo = el
i i + 1

go to 10
20 write (*,25) diff
25 format(lx,'Keplers equation did not converge',dl3.5)
30 continue

return
end

c

c-----------------------------------------------------------------------

cc

function arctan(x,y)
double precision arctan,a,x,y
a - datan2(x,y)
if( a.lt. O.dO) a - a + 6.283185307179586d0
arctan - a
return
end

c

c
C----------------------------------------------------------------------------------------

c
C

subroutine linearh(elemts,randv,xs,caph,capr,h)
c
c This routine returns the linearized observation relation,
c capital H as well as the expected observation h.
c As a byproduct, it finds the capital R matrix
c needed to convert the covariance from that for the elements
c to that for randv. Also returns an updated randy vector
c for the elemts in the call.
c

double precision elemts(6),randv(6),xs(3),caph(6),r,r2,r32
double precision dot,capr(6,6),temp(3),h

B-31



C

c We'll need the capr matrix to apply the chain rule..
call esat6(0.0d+00,elemts,randv,capr,l,l)

C

r2-randv(l)*randv(l)+randv(2)*randv(2)+randv(3)*randv(3)
r-dsqrt( (r2)
r32-r2**l.5d+00
dot-randv(l)*xs(l)+randv(2)*xs(2)+randv(3)*xs(3)

"c The nonzero elements of partial h/partial randy are:
temp(l)-(xs(l)*r2-randv(l)*dot)/r32
temp(2)-(xs(2)*r2-randv(2)*dot)/r32
temp(3)-(xs(3)*r2-randv(3)*dot)/r32

"c Need to convert this to partial h/partial elements.. .use
"c chain rule. Note that we make use of fact that the last
"c three elements of temp would be zero.

do 101 j=l,6
caph(j >0.Od+00
do 111 i=1,3

caph(j)=caph(j)+temp(i)*capr(i,j)
11 continue
101 continue

"c Now for the expected observation...
h-(randv(l)*xs(l)+randv(2)*xs(2)+randv(3)*xs(3))/r

"c Got it all ....
return
end

C

c
C ----------------------------------------------------------------------------------------------

c
C

subroutine convp(pin,pout,r,nrows,ncols)
C

c This routine converts from one covariance to another using the
c rotation matrix r
c

double precision pin(ncols,ncols),pout(nrows,nrows)
double precision r(nrows,ncols),mtemp(6,6)

c nrows and ncols are the number of rows/columns in R
C

"c Form R times Pin:
do 10 i-l,nrows

do 20 j-l,ncols
mtemp(i,j)-0.Od+00
do 30 k-l,ncols

mtemp(i,j)-mtemp(i,j)+r(i,k)*pin(k,j)
30 continue
20 continue
10 continue

"c Now multiply (R times Pin) times R transpose:
do 40 i-l,nrows

do 50 j-l,nrows
S pout(i,j)-0.Od+00

do 60 k-l,ncols
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pout(i,j)-pout(i,j)+mtemp(i,k)*r(j ,k)
60 continue
50 continue
40 continue

c Done!
return
end

C

c

C -----------------------------------------------------------------------------------------------

C

C

subroutine formp(u,d,p)
c

c This routine assembles P=UDUt
c

double precision u(6,6),d(6),p(6,6),mtemp(6,6)
c
"c this is UD after taking advantage of the zeros in U:

do 5 i-1,5
mtemp(i,i)=d(i)
do 10 j-i+l,6

mtemp(i,j)-u(i,j)*d(j)
10 continue

5 continue
mtemp(6,6)-d(6)

"c now UD times U transpose (after exploiting zeros in both):
do 15 i-1,6

do 20 j-l,6
p(i,j)-0.Od+00
do 25 k-j,6

p(i,j)-p(i,j)+mtemp(i,k)*u(j,k)
25 continue
20 continue
15 continue

return
end

c
c
C ---------------------------------------------------------------------
c

subroutine rot2rvh(rv,pin, r,v,h,pout)
c
c This routine changes P for randv to P for rvh.
c Also returns the values of r,v,h to the main
c for printing. Takes advantage of all of the zeros
c in the rotation matrix.
c

double precision rv(6),rotm(3,6),r,v,hvec(3),h,pin(6,6),
I pout(3,3),mtemp(3,6)
r-dsqrt(rv(l)*rv(l)4+rv(2)*rv(2)-+rv(3)*rv(3))
v-dsqrt(rv(4)*rv(4)+rv(5)*rv(5)+rv(6)*rv(6))
hvec(l)-rv(2)*rv(6) -rv(3)*rv(5)
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hvec(2)-rv(3)*rv(4) -rv(l)*rv(6)
hvec(3)-rv(1)*r-v(5) .rv(2)*rv(4)
h-dsqrt(hvec(l)*hvec(l)+hvec(2)*hvec(2)+hvec(3)*hvec(3))

c Assemble the nonzero parts of the rotation matrix:
rotm(1, l)-rv(l)/r
rotm(l, 2)=rv(2)/r
rotm(1, 3)=rv(3)/r
rotm(2 ,4)=rv(4)/v
rotm(2,5)=rv(5)/v
rotm(2 ,6)-rv(6)/v
rotm(3 ,l)=( -hvec(2)*rv(6)+hvec(3)*rv(5) )/'h
rotm(3,2)= (hvec(l)*rv(6)-hvec(3)*rv(4))/h
rotm(3, 3)=(-hvec(l)*rv(5)+hvec(2)*rv(4))/h
rotm(3,4)- (hvec(2)*rv(3)-Iivec(3)*rv(2))/h
rotm(3,5)=(-h'.'ec(l)*rv(3)+hvec(3)*rv(1) )/h
rotm(3,6)- (hvec(l)*r-v(2)-hvec(2)*rv(l))/h

* R times Pin:
do 10 j=1,6

1 rotm(I,3)*pin(3,j)
mtemp(2,j)=-rotm(2,4)*pin(4,j)+rotm(2,5)*pin(5,j)+

1 rotm(2,6)*pin(6,j)
mtemp(3 ,j )-0.0d400
do 20 i-1,6
mtemp(3 ,j )-mtemp(3 ,j )4rotm(3, i)*pin(i ,j)

20 continue
10 continue

c Now do (RPin) times R transpose:
do 30 j-1,3

pout(j ,l)=mtemp(j ,l)*rotm(1,l)+mtemp(j ,2)*rotm(l,2)+
1 mtemp(j,3)*rotm(I,3)

pout(j ,2)=mtemp(j ,4)*rotm(2,4)+mtemp(j ,5)*rotm(2,5)+
2 mtemp(j,6)*rotm(2,6)

pout(j ,3)=0.Od+00
do 40 i-1,6

pout(j ,3)-pout(j ,3)+mtemp(j ,i)*rotm(3,i)
40 continue
30 continue

c That's all, folks....
return
end

C

C--------------------------------------------------------------------------------------

subroutine propcov(y,dtilda,cn,phi,uplus,dplus,n,u,d)
c

c This routine propagates the covariance from t+ to (t+deltat)-
c in factored form (see Maybeck, page 397).
c

double precision y(6,12),dtilda(12),cn(6,6),phi(6,6),
+ uplus(6,6),dplus(6),u(6,6),d(6),avecs(12,6),cvecs(12,6),
+ dvecs(12,6)
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integer i,j,k,n
c Construct the y matrix:

do 132 i=l,n
do 135 j-l,n

y(i,j)-O.Od+00
do 140 k-l,j

y(i,j)=y(i,j)+phi(i,k)*uplus(k,j)
140 continue
135 continue
132 continue

do 145 i-l,n
do 150 j-l,n

y(i,j+n)-cn(i,j)
150 continue
145 continue

c
c Construct dtilda:

do 160 j=l,n
dtilda(j)=dplus(j)

160 continue
C

c Start algorithm on page 397 of Maybeck:
c
"c Partition off the a vectors

do 162 k=n,l,-I
do 164 j-1,2*n,l

avecs(j ,k)-y(k,j)
164 continue
162 continue

"c Now the "meat" of the algorithm ......
do 166 k-n,2,-I

do 168 j=1,2*n,l
cvecs(j ,k)-dtilda(j)*avecs(j ,k)

168 continue
d(k)-0.Od+00
do 170 i-1,2*n,l

d(k)-d(k)+avecs(i , k)*cvecs(i,k)
170 continue

do 172 i-1,2*n,l
dvecs(i,k)-cvecs(i,k)/d(k)

172 continue
do 174 j-1,k-l,l

u(j,k)-O.Od+00
do 176 i-l,2*n,l

u(j ,k)-u(j ,k)+avecs(i,j)*dvecs(i,k)
176 continue

do 178 i-1,2*n,l
avecs(i,j)-avecs(i,j)-u(j,k)*avecs(i,k)

178 continue
174 continue
166 continue

do 182 j-1,2*n,l
cvecs(j , i)-dtilda(j)*avecs(j, 1)

182 continue
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d(l)-O.Od+OG
do 184 i=1,2*n,l

d(l)=d(l)favecs(i,l)*cvecs(i,l)
184 continue

c Since u is upper unitary, put the ones on the diagonal ....
do 190 k-l,n

u(k,k)-l.0d+00
190 continue

return
end

c

c

C ---------------------------------------------------------------------

c

c

subroutine ludcmp(a,n,np,indx,d)
c

c This routine is from the book, "Numerical Recipes."
C

c Given an N x N matrix A, with physical dimenstion NP, this
c routine replaces it by the LU decomposition of a rowwise
c permutation of itself. A and N are input. A is output,
c arranged as shown in eq 2.3.14 of the book; INDX is an
c output vector which records the row permutation effected by
c the partial pivoting; D is output as +/-l depending on whether
c the number of row interchanges was even or odd, respectively.
c This routine is used in combination with LUBKSB to solve linear
c equations or to invert a matrx.
c

implicit double precision (a-h,o-z)
parameter (nmax-20,tiny=l.Oe-20)
dimension a(np,np),indx(n),vv(nmax)
d-l.
do 12 i-l,n

aamax-0.
do 11 j-l,n

if (abs(a(i,j)).gt.aamax) aamax-abs(a(i,j))
11 continue

if (aamax.eq.0.) pause 'singular matrix.'
vv( i)-l./aamax

12 continue
do 19 J-l,n

if (j.gt.l) then
do 14 i-lj-l

sum-a(ij)
if (i.gt.l)then

do 13 k-li-i
sum-sum-a(i,k)*a(k,j)

13 continue
a(ij)-sum

endif
14 continue

endif
aamax-0.
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do 16 i-j, n
sum-a(i,j)
if (j.gt.l)then

do 15 k-l,j-1
sum=sum-a(i,k)*a(k,j)

15 continue
a(i,j)-sum

endif
dum=vv( i)*abs (sum)
if (dum.ge.aamax) then

imax-i

aamax-dum
endif

16 continue
if (j .ne.imax)then

do 17 k=l,n
dum-a( imax, k)
a(imax,k)-a(j ,k)
a(j ,k)-dum

17 continue
d--d
vv(imax)-vv(j)

endif
indx(j)-imax
if(j .ne.n)then

if(a(j ,j).eq.0.)a(j ,j)-tiny
dum-l./a(j ,j)
do 18 i-j+l,n

a(i,j)-a(i,j)*dum
18 continue

endif
19 continue

if(a(n,n) .eq.O. )a(n,n)-tiny
return
end

c

c

c ---------------------------------------------------------------------

c

c

subroutine lubksb(a,n,np, indx,b)
c

c From the book, "Numerical Recipes.."
c
c Solves the set of N linear equations AX-B. Here A is input,
c not as the matrix A but rather as its LU decomposition,
c determined by the routine LUDCMP. INDX is input as the permu-
c tion vector returned by LUDCMP. B is input as the RHS vector B,
c and returns with the solution vector X. A, N, NP, and INDX
c are not modified by this rou 4'ne and can be left in place for
c successive calls with different kM!s 2. This routine takes
c into account the possibility that B will begin with many zero
c elements, so it is efficient for use in matrix inversion

c
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implicit double precision (a-h,o-z)
dimension a(np,np),indx(n),b(n)
i i-o
do 12 i-1,n

ll-indx(i)
sum-b (11)
b ( 1)-b (i)
if (ii.ne.O)then

do 11 j-ii,i-1
sum-sum-a(i,j)*b(j)

11 continue
else if (suni.ne.O.) then
i i-i

endif
b(i)-sum

12 continue
do 14 i-n,1,-1

sum-b (i)
if(i.lt.n)then

do 13 j-i+1,n
sum-suin-a(i,j)*b(j)

13 continue
end if
b(i)-sum/a(i, i)

14 continue
return

* end

B-38



Appendix C: Orbital Element Review

Six independent quantities are required to describe a spacecraft's

position and velocity completely. Three coordinate systems are dis-

cussed in this study: a cartesian system (geocentric-equatorial) and

two orbital element sets (classical and equinoctial). These systems are

described briefly in this appendix.

The geocentric-equatorial system is a typical cartesian system,

with three orthogonal axes e e , e (7:55-56; 27:7-9). e points
x y z X

in the direction of the vernal equinox; e points out the Earth's
z

north pole; e completes the system such that it lies in the Earth's
Y

equatorial plane and e ^ e x e , as shown in Fig,-re C-1. In this
z X y

system the position and velocity of the spacecraft are simply:

r = xe + ye + ze (C-la)
- x y z

S- ve + v e + ve (C-lb)
x x y y z z

The six elements which completely describe the position and velocity

are the scalar elements of the vectors r and v.

The classical orbital elements are convenient for visualizing orbi-

tal motion (7:58-60; 27:42-44). These are defined with the help of

Figure C-1 as:

1. a, the semimajor axis -- a constant defining the size of the

O conic section (orbit).

C-1



A satellite' s position
e z at epoch

00

. . . . . .

/e

e line of nodes

vernal equinox

diretion satellite' s position
at epoch

(always defined)

FigureC-i. Obitalelement

..... ....

. . . . . . . . . . .



2. e, eccentricity -- a constant defining the shape of the conic
c

section (orbit). The value is given by e = - where c is the
a

distance shown in Figure C-I.

3. i, inclination -- the angle between e and the orbit normal
z

e
h

4. 0, longitude of the ascending node -- the angle (in the x-:

plane) between e and the line of nodes, measured counterclock-

wise as viewed from above the e axis.
z

5. w, argument of periapsis -- the angle (in the orbit plane)

between the line of nodes and the periapsis direction, measured in

the direction of satellite motion.

6. fo, true anomaly at epoch -- the angle (in the orbit plane)
0

between the periapsis direction and the current position vector,

measured in the direction of satellite motion.

The true anomaly at epoch, f , is often replaced with the mean
0

anomaly at epoch, M . At any time, the true anomaly and mean anomaly
0

can be related by way of the eccentric anomaly E

M - E - e sinE (C-2)

where the eccentric anomaly is found by computing:

cosf + e
cosE cosf (C-3a)

+ e c-sf
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sinE I - e sinf C-31
1 + e cosf

Note that the argument of periapsis is undefined for circular

(e = 0) orbits and the longitude of the ascending node is undefined for

equatorial (i = 00) orbits. Certain sums of these terms are still

defined, however. The sum r = w + 0 is known as the longitude of the

periapsis and exists even when 1 does not. Similarly, the true longi-

tude at epoch, I = 7r + f , is defined for all orbits, regardless of
0 o

whether w or Q are defined.

A set of equinoctial elements can be derived from the classical

elements (8:490-495; 27:44; 28:3-8 - 3-9). These are

a = e cos(Q + W) (C-4a)

Sa = e sin(O + w) (C-4b
9

a - a k -4c

L - + u + M (C- d}

sini sinfD (C-4e)
x I + cosi

sini cos 7-4f)
-I + cosi

where a is the semimajor axis; L is the mean longitude; e, i, 0, M,

and w have already been defined; and a f, a , X, and 0 do not have

formal names. Unlike the classical orbital elements, these are well-

defined for all orbits studied.

C-4



Appendix D. Position and Velocity Terms for Freedom's Orbit

To obtain the position and velocity from Freedom's equinoctial

elements, a simple algorithm can be followed (27:51,73-'5). Only its

application to circular orbits will be covered here. The full, non-

circular case can be found in Reference 27. Definitions for the orbitai

elements employed herein are in Appendix C and will not be repeated.

First, compute r, r. p, rf, sinl, and cost from the following

sequence:

r = a(l - e cosE) (D-la)

r = (e sinE) (D- ib)

rrp -al 1 e2) (0- ic)

rf = -; (D-1d)
r

sinl a [ sin(E + ) a - sinE (D-le)r 8 fl+ eI

cosl - cos(E + ir) a + a e SinE (D-lf)
r L 1+ e2

v/ e-
+ I -
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ý,Iiich, for circular orbits, reduce to

r - a (D-2a)

ý - 0 (D-2b)

p - a (D-2c)

= Eaý - Vc (D-2d)

sinI - sinL (D-2e)

cosl - cosL (D-2f)

where the term has been noted as the circular orbit speed.J a

Define the terms w x , w Y w z by the sequence of calculations:

2 2
W - V) x (D-3a)z + 02 + XI

w = + w ) X (D-3b)x z

w - (1 + w (D-3c)
Y z

Then, the position and velocity are given by

r cosl + sinl (D-4a)

v - ý 

( _A

cosl + sinI + rt f sinl + cosl (D-4b)

where
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w 2

+ x w

f -W x w y (D - 5 a

+ w

-W

-W w
x y

+ w

w 2 (D - 5h)

+ y w

-W
y

Or, in light of Eqs. (D-2), Eqs. (D-4) become:

A

r - a cosL + E sinL (D-6a)

A

y - v f sinl + & CoSl (D-6b)

For Freedom's orbit:

w = 0.3320 (D-7a)
x

w = -0.3320 (D-7b)
y

w ;z; 0.8823 (D-7c)
z
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Finally, the position and velocity vectors can be computed via

Eqs. (D-5) and (D-6). These are simply:

x0.9415 cosL + 0.0585 sin0
r y 0.0585 cosL + 0.9415 sinL a (D-•a)

-0.3320 cosL + 0.3320 sinL

[v] 0.0585 cosL - 0.9415 sinL

_V[ 0.3320 cosL + 0.3320 sinL 0.9415 cosL - 0.0585 sinL v (D-8b)

Vz

0

0
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